PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of magnetisation processes in transformer steel sheets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study describes a method that allows the modelling of magnetisation processes in transformer steel sheets for any direction of the magnetic field strength. In the proposed approach, limiting hysteresis loops for the rolling and transverse directions were used. These loops are modified depending on the magnetisation angle between the direction of the field strength vector and rolling direction. For this purpose, unique correction coefficients, which are functions of the magnetisation angle, were applied for both hysteresis loops. An algorithm for determining the limiting hysteresis loops for any magnetisation angle is presented herein. The calculation results for several cases of magnetisation were compared with the measured hysteresis loops.
Rocznik
Strony
855--870
Opis fizyczny
Bibliogr. 32 poz., fig.
Twórcy
  • Department of Electrical Engineering, Cracow University of Technology 24 Warszawska str., 31-155 Kraków, Poland
  • Department of Electrical Engineering, Cracow University of Technology 24 Warszawska str., 31-155 Kraków, Poland
Bibliografia
  • [1] Mousavi S., Shamei M., Siadatan A., Nabizadeh F., Mirimani S. H., Calculation of Power Transformer Losses by Finite Element Method, IEEE Electrical Power and Energy Conference, EPEC (2018), DOI:10.1109/EPEC.2018.8598292.
  • [2] Sarac V., FEM 2D and 3D design of transformer for core losses computation, International Scientific Journal – Machines. Technologies. Materials., vol. 2, no. 3, pp. 119–122 (2017).
  • [3] Jain S. A., Pandya A. A., Three Phase Power Transformer Modeling Using FEM for Accurate Prediction of Core and Winding Loss, International Conference on Research and Innovations in Science, Engineering & Technology, Selected Papers in Engineering, vol. 1, pp. 75–80 (2017), DOI: 10.29007/z82m.
  • [4] Mikula L., Ramdane B., Blatter Martinho L., Kedous-Lebouc A., Meunier G., Numerical modelling of static hysteresis phenomena using a vector extension of the Loss Surface model, IEEE Conference on Electromagnetic Field Computation, CEFC (2022), DOI: 10.1109/CEFC55061.2022.9940905.
  • [5] Baron B., Kolańska-Płuska J., Łukaniszyn M., Spałek D., Kraszewski T., Solution of nonlinear stiff differential equations for a three-phase no-load transformer using a Runge–Kutta implicit method, Archives of Electrical Engineering, vol. 71, no. 4, pp. 1081–1106 (2022), DOI: 10.24425/aee.2022.142126.
  • [6] Mazgaj W., Direct calculation of the flux density and eddy current density in the analysis of a threedimensional electromagnetic field, Archives of Electrical Engineering, vol. 57, no. 223, pp. 23–40 (2008).
  • [7] Mazgaj W., Szular Z., Szczurek P., Calculations of magnetic field in dynamo sheets taking into account their texture, Open Physics, vol. 15, pp. 1034–1038 (2017), DOI: 10.1515/phys-2017-0129.
  • [8] Pfutzner H., Rotational Magnetization and Rotational Losses of Grain Oriented Silicon Steel Sheets – Fundamental Aspects and Theory, IEEE Transactions on Magnetics, vol. 30, no. 5, pp. 2802–2807 (1994), DOI: 10.1109/20.312522.
  • [9] Pfutzner H., Mulasalihovic E., Yamaguchi H., Sabic D., Shilyashki G., Hofbauer F., Rotational magnetization in transformer cores - a review, IEEE Transactions on Magnetics, vol. 47, no. 11, pp. 4523–4533 (2011), DOI: 10.1109/TMAG.2011.2151201.
  • [10] Fiorillo L., Dupré R., Appino C., Rietto A.M., Comprehensive model of magnetization curve, hysteresis loops, and losses in any direction in grain-oriented Fe–Si, IEEE Transactions on Magnetics, vol. 38, no. 3, pp. 1467–1475 (2002), DOI: 10.1109/20.999119.
  • [11] Brailsford F., Physicasl principles of magnetism, D.Van Nostrand, London (1966).
  • [12] Bozorth R. M., Ferromagnetism, IEEE Press, New York (1978).
  • [13] Jiles D., Introduction to magnetism and magnetic materials, Chapman & Hall, London (1998).
  • [14] Soiński M., Moses A. J., Handbook of magnetic materials, vol. 8, Elsevier Science B.V. (1994).
  • [15] Shin S., Schaefer R., DeCooman B. C., Anisotropic magnetic properties and domain structure in Fe-3%Si(110) steel sheet, Journal of Applied Physics, vol. 109, no. 7, 07A307 (2011), DOI: 10.1063/1.3535547.
  • [16] Sudo M., Matsuo T., Magnetization modeling of silicon steel using a simplified domain structure model, Journal of Applied Physics, vol. 111, no. 7, 07D107 (2012), DOI: 10.1063/1.3672073.
  • [17] Furuya A., Fujisaki J., Uehara Y., Shimizu K., Oshima H., Matsuo., Micromagnetic Hysteresis Model Dealing with Magnetization Flip Motion for Grain-Oriented Silicon Steel, IEEE Transactions on Magnetics, vol. 50, no. 11 (2014), DOI: 10.1109/TMAG.2014.2329679.
  • [18] Ito S., Mifune T., Matsuo T., Kaido C., Macroscopic magnetization modeling of silicon steel sheets using an assembly of six-domain particles, Journal of Applied Physics, vol. 117, no. 17, 17D126 (2015), DOI: 10.1063/1.4915105.
  • [19] Ferreira da Luz M. V., Leite J.V., Benabou A., Sadowski N., Three-Phase Transformer Modeling Using a Vector Hysteresis Model and Including the Eddy Current and the Anomalous Losses, IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 3201–3204 (2010), DOI: 10.1109/TMAG.2010.2049006.
  • [20] Sande H.V., Boonen T., Podoleanu I., Henrotte F., Hameyer K., Simulation of a Three-Phase Transformer Using an Improved Anisotropy Model, IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 850–855 (2004), DOI: 10.1109/TMAG.2004.825004.
  • [21] Cardelli E., Faba A., Laudani A., Pompei M., A challenging hysteresis operator for the simulation of Goss-textured magnetic materials, Journal of Magnetism and Magnetic Materials, vol. 432, pp. 14–32 (2017), DOI: 10.1016/j.jmmm.2017.01.068.
  • [22] Demenko A., Three Dimensional Eddy Current Calculation Using Reluctance-Conductance Network Formed by Means of FE Method, IEEE Transactions on Magnetics, vol. 36, no. 4, pp. 741–745 (2000), DOI: 10.1109/20.877554.
  • [23] Theocharis A.D., Milias-Argitis J., Zacharias T., Three-Phase Transformer Model Including Magnetic Hysteresis and Eddy Currents Effects, IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1284–1294 (2009), DOI: 10.1109/TPWRD.2009.2022671.
  • [24] Cao D., Zhao W., Liu T., Wang Y., Magneto-Electric Coupling Network Model for Reduction of PM Eddy Current Loss in Flux-Switching Permanent Magnet Machine, IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1189–1199 (2022), DOI: 10.1109/TIE.2021.3055169.
  • [25] Li W., Kim I.H., Jang S.M., Koh C.S., Hysteresis Modeling for Electrical Steel Sheets Using Improved Vector Jiles-Atherton Hysteresis Model, IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3821–3824 (2011), DOI: 10.1109/TMAG.2011.2158296.
  • [26] Cardelli E., Della Torre E., Faba A., Numerical Modeling of Hysteresis in Si-Fe Steels, IEEE Transactions on Magnetics, vol. 50, no. 2 (2014), DOI: 10.1109/TMAG.2013.2284292.
  • [27] Baghel A.P.S., Kulkarni S.V., Hysteresis modeling of the grain-oriented laminations with inclusion of crystalline and textured structure in a modified Jiles-Atherton model, Journal of Applied Physics, vol. 113, 043908 (2013), DOI: 10.1063/1.4788806.
  • [28] Liorzou F., Phelps B., Atherton D., Macroscopic Models of Magnetization, IEEE Transactions on Magnetics, vol. 36, no. 2, pp. 418–428 (2000), DOI: 10.1109/20.825802.
  • [29] Mazgaj W., Sierzega M., Szular Z., Approximation of Hysteresis Changes in Electrical Steel Sheets, Energies, vol. 14, no. 14 (2021), DOI: 10.3390/en14144110.
  • [30] Mao W., Atherton D.L., Magnetization Vector Directions in a Steel Cube, IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3084–3086 (2000), DOI: 10.1109/20.908688.
  • [31] Yu Y., Atherton D.L., Study of Magnetization Vector Rotation Process Using Tensor Magnetic Hysteresis Loops, IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 3990–3992 (1997), DOI: 10.1109/20.619639.
  • [32] Attalah K., Howe D., Calculation of the rotational power loss in electrical steel laminations from measured H and B, IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 3547–3549 (1993), DOI:10.1109/20.281225.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82536cdb-b3b1-4411-97be-d71481e9f52c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.