PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distributed collaborative optimization DC voltage control strategy for VSC–MTDC system with renewable energy integration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aiming at the problem of DC voltage control deviation and instability caused by a large-scale renewable energy access VSC–MTDC system, this paper combines voltage margin control and droop control. A strategy for controlling collaborative optimization in a sparsely distributed communication network has been proposed. Firstly, the distributed modeling of the system is carried out by combining MAS technology with small signal modeling. Then, a distributed model predictive controller is designed for a single droop control converter station. On this basis, a distributed cooperative optimization control strategy is proposed. According to the DC voltage deviation, the system adopts different control methods to control the receiving converter station. Finally, based on PSCAD/EMTDC and MATLAB co-simulation platforms, a six-terminal flexible HVDC system is built to verify the effectiveness of the control strategy under different conditions such as input power fluctuation, any converter station out of operation and system communication failure.
Rocznik
Strony
325--342
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University China
autor
  • School of New Energy and Power Engineering, Lanzhou Jiaotong University China
Bibliografia
  • [1] Xu D., Liu Y., Wu J., Review on Control Strategies of Multi-Terminal Direct Current Transmission System, Transactions of China Electrotechnical Society, vol. 30, no. 17, pp. 1–12 (2015), DOI: 10.1109/TSTE.2015.2497340.
  • [2] Su M.H., Li Y.K., Dong H.Y., Liu K.Q., Zou W.W., Subsynchronous oscillation and its mitigation of VSC–MTDC with doubly-fed induction generator-based wind farm integration, Archives of Electrical Engineering, vol. 70, no. 1, pp. 53–72 (2021), DOI: 10.24425/aee.2021.136052.
  • [3] Liu T.Q., Tao Y., Li B.H., Critical Problems of Wind Farm Integration via MMC-MTDC System, Power System Technology, 2017, vol. 41, no. 10, pp. 1–9 (2017).
  • [4] Li C.S., Li Y.K., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 69, no. 1, pp. 5–21 (2020), DOI: 10.24425/aee.2020.131755.
  • [5] Wang L., Wu X.L., Hou J.X., Wang T.Z., Control of photovoltaic power integration based on multiterminal VSC HVDC system, Power System Protection and Control, vol. 47, no. 4, pp. 65–72 (2019).
  • [6] Suo Z.W., Li G.Y., Chi Y.G., Wang W.S., Multi-port DC Substation for Offshore Wind Farm Is Master-slave Control, Automation of Electric Power Systems, vol. 39, no. 11, pp. 16–23 (2015).
  • [7] Nakajima T., Irokawa S.A., control system for HVDC transmission by voltage sourced converters, 1999 IEEE Power Engineering Society Summer Meeting, Conference Proceedings, pp. 1113–1119 (1999).
  • [8] Wang Z., He J.H., Yin X., Fang Z., Distributed Control of VSC–MTDC Systems Considering Trade off Between Voltage Regulation and Power Sharing, IEEE Transactions on Power Systems. vol. 35, no. 3, pp. 1812–1821 (2020), DOI: 10.1109/TPWRS.2019.2953044.
  • [9] Eduardo P.A., Agusti E.A., Sajjad F. et al., DC voltage droop control design for multi-terminal HVDC systems considering AC and DC grid dynamics, 2016 IEEE Power and Energy Society General Meeting2 (2016), DOI: 10.1109/PESGM.2016.7741218.
  • [10] Xiao L., Xu Z., An T., Bian Z.P., Improved Analytical Model for the Study of Steady State Performance of Droop-Controlled VSC–MTDC Systems, IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 2083–2093 (2017), DOI: 10.1109/TPWRS.2016.2601104.
  • [11] Wang K., Liu J.T., Li Y.P., Zeng D., An adaptive power control strategy based droop feedback for VSC-HVDC Review on Control Strategies of Multi-Terminal Direct Current Transmission System, Power System Protection and Control, vol. 42, no. 9, pp. 48–53 (2014).
  • [12] Wang Y.Z., Wen W.J., Wang C.S. et al., Adaptive Voltage Droop Method of Multiterminal VSC-HVDC Systems for DC Voltage Deviation and Power Sharing, IEEE Transactions on Power Delivery, 2019, vol. 34, no. 1, pp. 169–176 (2019), DOI: 10.1109/TPWRD.2018.2844330.
  • [13] Chen P., Li M.H., Yan B., Hao J.F., Zhang Q., Zhao Q., Flexible Droop Control Strategy for VSC–MTDC Systems, Power System Technology, vol. 40, no. 11, pp. 3433–3440 (2016).
  • [14] Wu J.L., Liu X.H., Wang X.W., Yao W.Z., Research of DC Voltage Hybrid Control Strategy for VSC–MTDC System, Power System Technology, vol. 39, no. 6, pp. 1593–1599 (2015).
  • [15] Wang Z.D., Li K.J. et al., A Coordination Control Strategy of Voltage-Source-Converter-Based MTDC for Offshore Wind Farms, IEEE Transactions on Industry Applications, 2015, vol. 51, no. 4, pp. 2743–2752 (2015), DOI: 10.1109/TIA.2015.2407325.
  • [16] Yan M., Cai H., Xie Z.J., Zhang Z.R., Xu Z., Distributed DC voltage control strategy for VSC–MTDC systems, Electric Power Automation Equipment, vol. 40, no. 3, pp. 134–140 (2020), DOI: 10.16081/j.epae.202002011.
  • [17] Sun G.Q., Zheng Y.P., Wei Z.N., Zang H.X., Lin Z.J., Yuan Y., Model predictive control strategy for MMC-MTDC with offshore wind farms considering droop control characteristic, Renewable Energy Resources, vol. 35, no. 3, pp. 419–426 (2017).
  • [18] Li G.Y., Du Z.C., Shen C. et al., Coordinated Design of Droop Control in MTDC Grid Based on Model Predictive Control, IEEE Transactions on Power Systems, 2018, vol. 33, no. 3, pp. 2816–2828 (2018), DOI: 10.1109/TPWRS.2017.2764112.
  • [19] Eriksson R., A New Control Structure for Multiterminal DC Grids to Damp Interarea Oscillations, IEEE Transactions on Power Delivery, 2016, vol. 31, no. 3, pp. 990–998 (2016), DOI: 10.1109/TPWRD.2014.2364738.
  • [20] Le J., Liao X.B., Zhang Y.T., Chang J.X., Lu J., Review and Prospect on Distributed Model Predictive Control Method for Power System, Automation of Electric Power Systems, 2020, vol. 44, no. 23, pp. 179–191 (2020).
  • [21] Zhang Q.Z., Wang B., Li Y., Liu C., Research on fault crossing coordination control of a wind farm via a flexible direct current transmission system, Transactions of China Electrotechnical Society, 2020, vol. 48, no. 10, pp. 131–138 (2020).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-824995b3-dfef-4fd5-9463-5c2d3b50c530
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.