PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical and simulation modeling of dual active bridge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is a structured, in-depth analysis of dual active bridge modeling. In the research new, profound dual active bridge converter (DAB) circuit model is presented. Contrary to already described idealized models, all critical elements including numerous parasitic components were described. The novelty is the consideration of a threshold voltage of diodes and transistors in the converter equations. Furthermore, a lossy model of leakage inductance in an AC circuit is also included. Based on the circuit equations, a small-signal dual active bridge converter model is described. That led to developing control of the input and output transfer function of the dual active bridge converter model. The comparison of the idealized model, circuit simulation (PLECS), and an experimental model was conducted methodically and confirmed the high compatibility of the introduced mathematical model with the experimental one. Proposed transfer functions can be used when designing control of systems containing multiple converters accelerating the design process, and accurately reproducing the existing systems, which was also reported in the paper.
Rocznik
Strony
art. no. e142653
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] D.-K. Jeong, H.-S. Kim, J.-W. Baek, J.-Y. Kim, and H.-J. Kim, “Dual active bridge converter for energy storage system in DC microgrid,” 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 2016, pp. 152–156, doi: 10.1109/ITEC-AP.2016.7512939.
  • [2] M.-S. Kim, D.-H. Kim, D.-K. Jeong, J.-M. Kim, and H.-J. Kim, “Soft start-up control strategy for dual active bridge converter with a supercapacitor,” Energies, vol. 13, no. 16, p. 4083, Aug. 2020, doi: 10.3390/en13164083.
  • [3] R. Barlik, M. Nowak, and P. Grzejszczak, “Power transfer analysis in a single phase dual active bridge,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 4, pp. 809–828, 2013. doi: 10.2478/bpasts-2013-0088.
  • [4] Y. Xiao, Z. Zhang, K.T. Manez, and M.A.E. Andersen, “A universal power flow model for dual active bridge-based converters with phase shift modulation,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 6480–6500, June 2021, doi: 10.1109/TPEL.2020.3039195.
  • [5] K. Takagi and H. Fujita, “Dynamic control and performance of a dual-active-bridge DC-DC converter,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7858–7866, Sept. 2018, doi: 10.1109/TPEL.2017.277326.
  • [6] S. Shao et al., “Modeling and advanced control of dual-active-bridge DC–DC converters: A review,” IEEE Trans. Power Electron., vol. 37, no. 2, pp. 1524–1547, Feb. 2022, doi: 10.1109/TPEL.2021.3108157.
  • [7] Y. Yan, H. Gui, and H. Bai, “Complete ZVS analysis in dual active bridge,” in IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1247–1252, Feb. 2021, doi: 10.1109/TPEL.2020.3011470.
  • [8] H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge DC-DC converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2078–2084, Apr. 2012, doi: 10.1109/TPEL.2011.2165734.
  • [9] R.W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. 2ed., Springer, 2001.
  • [10] W. Janke, “Equivalent circuits for averaged description of DCDC switch mode converters based on separation of variables approach,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 61, no. 3, pp. 711–723, 2013. doi: 10.2478/bpasts-2013-0076.
  • [11] O.M. Hebala, A.A. Aboushady, K.H. Ahmed, S. Burgess, and R. Prabhu, “Generalized small-signal modelling of dual active bridge DC/DC converter,” 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 2018, pp. 914–919, doi: 10.1109/ICRERA.2018.8567014.
  • [12] F.L.F. Marcelino, H.H. Sathler, T.R. de Oliveira, and P.F. Donoso-Garcia, “Modeling and control of a dual active bridge for energy storage in DC microgrid applications,” 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2017, pp. 1–8, doi: 10.1109/PEDG.2017.7972461.
  • [13] I. Batarseh and K. Siri, “Generalized approach to the small signal modeling of DC-to-DC resonant converters,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 3, pp. 894–909, July 1993, doi: 10.1109/7.220938.
  • [14] P. Wang, X. Chen, C. Tong, P. Jia, and C. Wen, “Large and small-signal average-value modeling of dual-active-bridge DC-DC converter with triple-phase-shift control,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 92379250, Aug. 2021, doi: 10.1109/TPEL.2021.3052459.
  • [15] F. Krismer and J.W. Kolar, “Accurate small-signal model for the digital control of an automotive bidirectional dual active bridge,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2756–2768, Dec. 2009, doi: 10.1109/TPEL.2009.2027904.
  • [16] K. Zhang, Z. Shan, and J. Jatskevich, “Large- and small-signal average-value modeling of dual-active-bridge DC-DC converter considering power losses,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1964–1974, March 2017, doi: 10.1109/TPEL.2016.2555929.
  • [17] H. Beiranvand, E. Rorok, and M. Liserre, “Theoretical evaluation of semiconductor loss components behavior in ISOPDAB converters,” 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERING), 2019, pp. 1–7, doi: 10.1109/CPE.2019.8862369.
  • [18] T.N. Ramasamy, “Power Device Loss Analysis of a High-Voltage High-Power Dual Active Bridge DC-DC Converter,” Electric Power Conversion, Ed. M. G˘aiceanu, IntechOpen, 2018, doi: 10.5772/intechopen.80696. [Online] Available: https://www.intechopen.com/chapters/63379.
  • [19] J. Liu, J. Yang, J. Zhang, Z. Nan, and Q. Zheng, “Voltage balance control based on dual active bridge DC/DC converters in a power electronic traction transformer,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1696–1714, Feb. 2018, doi: 10.1109/TPEL.2017.2679489.
  • [20] R. Barlik, P. Grzejszczak, and M. Zdanowski, “Determination of the basic parameters of the high-frequency planar transformer,” Prz. Elektrotechniczny. – Electr. Rev., vol. R. 92, no. 6, pp. 71–78, 2016. doi: 10.15199/48.2016.06.13.
  • [21] J.G. Kassakian, M.F. Schlecht, and G.C. Verghese, Principles of Power Electronics. Addison – Wesley Publishing Company, Massachusetts Institute of Technology, 1999.
  • [22] M.M. Garg, Y.V. Hote, M.K. Pathak, and L. Behera, “An approach for buck converter PI controller design using stability boundary locus,” 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 2018, pp. 1–5, doi: 10.1109/TDC.2018.8440291.
  • [23] D. Xue, Y.Q. Chen, and D.P. Atherton, Linear Feedback Control, 2007, pp. 183–235.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-824599b0-fc4b-4803-ae44-6668d3e1d334
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.