PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the VAD – Native ventricle pumping system by an equivalent pump: A computational model based procedure

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: To assess the interaction between a continuous flow pump (CFP) and the native ventricle (NV) when both pumps are giving a flow contribution. Methods and results: The pumping system, composed of NV and of CFP, is replaced by an equivalent pump (EP) with the same NV filling characteristics and heart rate. It is assumed that EP cardiac output is equal to the sum of NV and CFP flows and that its Emax is correlated to the CFP pump speed. Both the pumping system and EP are addressed with a closed loop lumped parameters cardiovascular model connected to a Heart Mate II (HM-II) CFP. The experiments were performed to: 1: verify EP Emax correlation with CFP speed. Resulting correlation:~0.98; 2: verify EP parameters calculation accuracy, in comparison with the pumping system parameters for different values of peripheral resistance, Emax_NV, HR and CFP speed (8000–11000 RPM). Resulting average error: less than 4%; 3: show how EP can be used to obtain the desired haemodynamic or energetic conditions, then feeding the results into the pumping system, so as to regulate CFP speed accordingly. Conclusions: EP merges the properties of the pumping system composed of NVand CFP into a single pulsatile pump. The described methodology can be a useful support to optimise both haemodynamic and energetic variables in the pumping system when, with the simultaneous presence of CFP and NV flows, flow distribution between the two pumps becomes a critical issue.
Twórcy
  • Nałecz Institute of Biocybernetics and Biomedical Engineering, Trojdena 4, 02-109 Warsaw, Poland
  • Department of Cardiac Surgery, Policlinico Gemelli Hospital, Rome, Italy
  • Nałecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Institute for System Analysis and Computer Science ‘‘Antonio Ruberti”, National Research Council, Rome, Italy
  • Nałecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Nałecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium; Institute of Clinical Physiology, National Research Council, Pisa, Italy
Bibliografia
  • [1] Lima B, Bansal A, Abraham J, Rich JD, Lee SS, Soleimani B, et al. Controversies and challenges of ventricular assist device therapy. Am J Cardiol 2018;121(10):1219–24. https://doi.org/10.1016/j.amjcard.2018.01.034.
  • [2] Han J, Trumble D. Cardiac assist devices: early concepts, current technologies, and future innovations. Bioengineering 2019;6(1):18. https://doi.org/10.3390/bioengineering6010018.
  • [3] Potapov EV, Stepanenko A, Krabatsch T, Hetzer R. Managing long-term complications of left ventricular assist device therapy. Curr Opin Cardiol 2011;26(3):237–44.
  • [4] Graefe R, Henseler A, Körfer R, Meyns B, Fresiello L. Influence of left ventricular assist device pressure-flow characteristic on exercise physiology: assessment with a verified numerical model. Int J Artif Organs 2019;42(9):490–9. https://doi.org/10.1177/0391398819846126.
  • [5] Fresiello L, Rademakers F, Claus P, Ferrari G, Di Molfetta A, Meyns B, et al. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator. PLoS ONE 2017;12(7):e0181879. https://doi.org/10.1371/journal.pone.0181879.
  • [6] Gross C, Fresiello L, Schlöglhofer T, et al. Hemodynamic exercise responses with a continuous-flow left ventricular assist device: Comparison of patients’ response and cardiorespiratory simulations. PLoS One 2020;15(3):e0229688. Published 2020 Mar 18. doi: 10.1371/journal.pone.0229688
  • [7] Bose EL, Hravnak M, Pinsky MR. The Interface between Monitoring and Physiology at the bedside. Crit Care Clin 2015;31(1):1–24.
  • [8] Moscato F, Granegger M, Edelmayer M, Zimpfer D, Schima H. Continuous monitoring of cardiac rhythms in left ventricular assist device patients. Artif Organs 2014;38(3):191–8. https://doi.org/10.1111/aor.12141.
  • [9] Gross C, Schima H, Schlöglhofer T, Dimitrov K, Maw M, Riebandt J, et al. Continuous LVAD monitoring reveals high suction rates in clinically stable outpatients. Artif Organs 2020;44(7). https://doi.org/10.1111/aor.v44.710.1111/aor.13638.
  • [10] Hohmann S, Veltmann C, Duncker D, König T, Berliner D, Hanke J, et al. Initial experience with telemonitoring in left ventricular assist device patients. J Thorac Dis 2019;11(Suppl 6):S853–63. https://doi.org/10.21037/jtd10.21037/ jtd.2018.10.37.
  • [11] Clifford R, Robson D, Gross C, Moscato F, Schima H, Jansz P, et al. Beat-to-beat detection of aortic valve opening in HeartWare left ventricular assist device patients. Artif Organs 2019;43(5):458–66. https://doi.org/10.1111/aor.13381.
  • [12] Gross C, Marko C, Mikl J, Altenberger J, Schlöglhofer T, Schima H, et al. LVAD pump flow does not adequately increase with exercise. Artif Organs 2019;43(3):222–8. https://doi.org/10.1111/aor.13349.
  • [13] Klotz S, Jan Danser AH, Burkhoff D. Impact of left ventricular assist device (LVAD) support on the cardiac reverse remodeling process. Prog Biophys Mol Biol 2008;97(2-3):479–96.
  • [14] Ferrari G, Kozarski M, Zieliński K, Fresiello L, Di Molfetta A, Górczyńska K, et al. A modular computational circulatory model applicable to VAD testing and training. J Artificial Organs 2012;15(1):32–43. https://doi.org/10.1007/s10047-011-0606-4.
  • [15] Siewnicka A, Janiszowski K, Gawlikowski M. A Physical Model of the Human Circulatory System for the Modeling, Control and Diagnostic of Cardiac Support Processes. In: Březina T., Jabloński R. (eds) Mechatronics 2013. Springer, Cham. doi: 10.1007/978-3-319-02294-9_104.
  • [16] Zielinski K, Darowski M, Kozarski M, Ferrari G. The need for hybrid modeling in analysis of cardiovascular and respiratory support. Int J Artif Organs 2016;39(6):261–304. https://doi.org/10.5301/ijao.5000513.
  • [17] Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 1979;236(3): H498–505. https://doi.org/10.1152/ajpheart.1979.236.3.H498.
  • [18] Sunagawa K, Maughan WL, Burkhoff D and Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 245 (Heart Circ. Physiol. 14): H773-H780, 1983.
  • [19] Sagawa K, Maughan L, Suga H, Sunagawa K. Cardiac Contraction and the Pressure-Volume Relationship. New York: Oxford University Press; 1988.
  • [20] Fresiello L, Ferrari G, Di Molfetta A, Zieliński K, Tzallas A, Jacobs S, et al. A cardiovascular simulator tailored for training and clinical uses. J Biomed Inform 2015;57:100–12. https://doi.org/10.1016/j.jbi.2015.07.004.
  • [21] Di Molfetta A, Ferrari G, Filippelli S, Fresiello L, Iacobelli R, Gagliardi MG, et al. The use of VAD in univentricular physiology: the role of lumped parameter models. Artif Organs 2016;40(5):444–53.
  • [22] Ferrari G, Kozarski M, Fresiello L, Di Molfetta A, Zieliński K, Górczyńska K, et al. Continuous flow pump model study: influence of pump characteristics and cardiovascular parameters on pump performance. J Artificial Organs 2013;16(2):149–56. https://doi.org/10.1007/s10047-013-0691-7.
  • [23] Di Molfetta A, Ferrari G, Iacobelli R, Filippelli S; Di Chiara L, Guccione P, Amodeo A. Ventricular energetics in pediatric left ventricular assist device patients: a retrospective clinical study, ASAIO J 2017; 63(6): 815-23.
  • [24] Ferrari G, Kozarski M, De Lazzari C, Clemente F, Mimmo R, Guaragno M, et al. Physical modelling of the cardiovascular system: development of a new simulation system based on hybrid (numerical-hydraulic) components. Biocybernetics Biomed Eng 2003;23(2):3–15.
  • [25] Fresiello L, Zielinski K, Jacobs S, Di Molfetta A, Palko KJ, Bernini F, et al. Reproduction of continuous flow lvad experimental data by means of a hybrid cardiovascular model with baroreflex control. Artif Organs 2014;38(6):456–68. https://doi.org/10.1111/aor.12178.
  • [26] Darowski M, Kozarski M, Ferrari G, Zieliński K, Górczyńska K, Szczepanowski A, Palko KJ, Fresiello L, Di Molfetta A. A new hybrid (hydro-numerical) model of the circulatory system. Bull Polish Acad Sci – Technical Sci 2013; 61(4):993-1003. doi: 10.2478/bpasts-2013-010.
  • [27] Ferrari G, Di Molfetta A, Zieliński K, Fresiello L, Górczyńska K, Pałko KJ, et al. Control of a paediatric pulsatile VAD: a hybrid cardiovascular model study. Artif Organs 2017;41(12):1099–108. https://doi.org/10.1111/aor.12929.
  • [28] Di Molfetta A, Zielinski K, Ferrari G, Kozarski M, Okrzeja P, MSc, Iacobelli R, Filippelli S, Perri G, Darowski M, Jarvik R, Amodeo A. The use the new Infant Jarvik2015 in patients<8kg? An ‘‘in vitro” study using a hybrid simulator. Artificial Organs 2019; 43(1):E1-E8. doi:10.1111/aor.13302 In press on Artificial Organs.
  • [29] Fresiello L, Khir AW, Di Molfetta A, Kozarski M, Ferrari G. IABP timing and ventricular performance – comparison between a compliant and a stiffer aorta: a hybrid model study including baroreflex. Int J Artif Organs 2013;36(11):749–57. https://doi.org/10.5301/ijao.5000248.
  • [30] Tzallas AT, Katertsidis NS, Karvounis EC, Tsipouras MG, Rigas G, Goletsis Y, et al. Modeling and Simulation of Speed Selection on Left Ventricular Assist Devices. Comput Biol Med 2014;51:128–39. https://doi.org/10.1016/j.compbiomed.2014.04.013.
  • [31] Di Molfetta A, Amodeo A, Gagliardi MG, Trivella MG, Fresiello L, Filippelli S, et al. Haemodynamic effects of Ventricular Assist Device implantation on Norwood, Glenn and Fontan Circulation: a simulation study. Artif Organs 2016;40(1):34–42. https://doi.org/10.1111/aor.12591.
  • [32] Gilbert JC, Glantz SA. Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circ Res 1989;64(5):827–52.
  • [33] Di Molfetta A, Santini L, Forleo GB, Minni V, Mafhouz K, Della Rocca DG, et al. Towards a personalized and dynamic CRT-D. A computational cardiovascular model dedicated to therapy optimization. Methods Inf Med 2012;51(06):495–506. https://doi.org/10.3414/ME12-01-0011.
  • [34] Westerhof N. Pressure-flow relations of arterial system and heart. p.123. In: Biomechanics: Principles and Applications. Selected Proceedings of the 3rd General Meeting of the European Society of Biomechanics Nijmegen, The Netherlands, 21–23 January 1982. H.W. Huiskes, Dick H. van Campen, Joost R. de Wijn eds.
  • [35] Chirinos JA. Ventricular-arterial coupling: Invasive and noninvasive assessment. Artery Res 2013;7(1). https://doi.org/10.1016/j.artres.2012.12.002.
  • [36] Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans [published correction appears in Circ Res 1990 Apr; 66(4):1170]. Circ Res 1989;65(2):483–93. https://doi.org/10.1161/01.res.65.2.483.
  • [37] Ferrari G, De Lazzari C, de Kroon TL, Elstrodt JM, Rakhorst G, Gu YJ. Numerical simulation of hemodynamic changes during beating heart surgery: analysis of the effects of cardiac position alteration in an animal model. Artif Organs 2007;31(1):73–9.
  • [38] Antonini-Canterin F, Poli S, Vriz O, Pavan D, Bello VD, Nicolosi GL. The ventricular-arterial coupling: from basic pathophysiology to clinical application in the echocardiography laboratory. J Cardiovasc Echogr 2013;23(4):91–5. https://doi.org/10.4103/2211-4122.127408.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8244aad3-4add-4508-8b41-cb229e774a38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.