PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dysproz : pierwiastek ziem rzadkich o wysokim potencjale aplikacyjnym

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Dysprosium : rare earth element with high application potential
Języki publikacji
PL
Abstrakty
EN
The modern world is based on dynamically evolving technologies, in which rare earth elements play a significant role. This group of seventeen chemical elements, due to their unique chemical and physical properties, is crucial for the development of the most advanced industrial sectors. Rare earth metals, also known as rare earth elements (REE), have gained the status of strategic resources in the last two decades. Despite their small market share compared to other mining and metallurgy products, they are considered critical resources both in the European Union and in the United States. From the wide range of rare earth elements and the numerous advantages they bring, this work focuses on dysprosium. Starting with its historical background, presenting its chemical and physical properties, and ending with a review of the latest scientific articles. In recent years, understanding and characterizing the spectroscopic properties of dysprosium ions has become a subject of research for many groups of scientists worldwide. There has been a growing trend of interest in this rare earth element, as evidenced by literature reports in prestigious international journals. Dy3+ ions are often used as dopants in the production of modern inorganic phosphors, which are chemical compounds that emit light upon excited. This work will show the significant importance of using dysprosium-ion-doped phosphors, glasses, or quantum dots in many areas of science and industry. It emphasizes the crucial role dysprosium has played in the development of electroluminescent diodes, solar cells, sensors, optoelectronic devices, as well as in biomedicine, forensics and anti-counterfeiting applications.
Rocznik
Strony
1565--1584
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
  • Wydział Technologii i Inżynierii Chemicznej, Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich, ul. Seminaryjna 3, 85-326 Bydgoszcz
Bibliografia
  • [1] M. Karas, Kwartalnik Historii Nauki i Techniki, 2020, 4, 101
  • [2] M. Burchard-Dziubińska, Gospodarka W Praktyce I Teorii, 2014, 34 , 21
  • [3] N. Dushyantha, N. Batapola, I. M.S.K. Ilankoon, S. Rohitha, R. Premasiri, B. Abeysinghe, N. Ratnayake, K. Dissanayake, Ore Geology Reviews, 2020, 122, 103521
  • [4] Lanthanides, Tantalum and Niobium: Mineralogy, Geochemistry, Characteristics of Primary Ore Deposits, Prospecting, Processing and Applications edited by Peter Möller, Petr Cerny, and Francis Saupe, Springer-Verlag Berlin Heidelberg GmbH, 1986
  • [5] J.H.L Voncken, The Rare Earth Elements: An Introduction, Springer, 2016
  • [6] C.R. Neary, D.E. Highley, Rare Earth Element Geochemistry, 1983, 12, 423
  • [7] P.E. Lecoqa de Boisbaudran, C. R. Hebd. Seances Acad. Sci, 1886, 102, 1003
  • [8] P.E. Lecoq de Boisbaudran, The Chemical News, 1886, 53, 265
  • [9] D.N. Trifonow, V.D. Trifonow, Pierwiastki chemiczne. Jak je odkryto (OA Glebov i IV Poluyan, tłum.), Moskwa: Wydawnictwo Mir, 1985
  • [10] M. E. Weeks, J. Chem. Educ., 1932, 9, 1751
  • [11] G. URBAIN, Chew. Ztg., 1912, 36, 929
  • [12] W. Brzyska, Lantanowce i aktynowce, WNT, Warszawa, 1996
  • [13] D. Rajesh, Y.C. Ratnakaram, M. Seshadri, A. Balakrishna, T. Satya Krishna, J. Lumin., 2012, 132, 841
  • [14] I. Rayappan, K. Maheshvaran, S. Babu, K. Marimuthu, Phys. Status Solidi A, 2012, 209, 570
  • [15] X. Zhang, R. Cui, M. Zhang, C. Deng, Ceram. Int., 2024, 50, 6658
  • [16] Y. Xiang, Z. Liu, Y. Gao, L. Feng, T. Zhou, M. Liu, Y. Zhao, X. Lai, J. Bi, D. Gao, J. Chem. En., 2023, 456, 140901
  • [17] Q. Sun, S. Wang, B. Devakumar, L. Sun, J. Liang, T. Sakthivel, S. J. Dhoble, X. Huang, J. Alloys Compd., 2019, 804, 230
  • [18] X. Geng, Y. Xie, Y. Ma, Y. Liu, J. Luo, J. Wang, R. Yu, B. Deng, W. Zhou, J. Alloys Compd., 2020, 847, 156249
  • [19] J. Zhu, T. Yang, H. Li, Y. Xiang, R. Song, H. Zhang, B. Wang, J. Chem. En., 2023, 471, 144550
  • [20] Y. Hua, W. Ran, J. S. Yu, J. Chem. En., 2021, 406, 127154
  • [21] Y. Hua, J. S. Yu, Ceram. Int., 2021, 47, 6059
  • [22] X. Zhang, R. Cui, K. Guo, M. Zhang, J. Zhang, C. Deng, Ceram. Int., 2023, 49, 15402
  • [23] J. Li, Z. Wang, X. Xie, J. Li, R. Yang, C. Wang, R. Zhao, R. Yu, S. Xie, Y. Ji, J. Alloys Compd., 2024, 981, 173620
  • [24] S. Li, J. Guo, W. Shi, X. Hu, S. Chen, J. Luo, Y. Li, J. Kong, J. Che, H. Wang, B. Deng, R. Yu, J. Lumin., 2022, 244, 118681
  • [25] Q. Luo, Q. Li, Chem. Phys., 2024, 580, 112215
  • [26] A. A. Kaminskii, I. M. Silvestrova, S. E. Sarkisov, G. A. Denisenko, Phys. Status Solidi A, 1983, 80, 607
  • [27] H. J. Eichler, D. Ashkenasi, H. Jian, A. A. Kaminskii, Phys. Status Solidi A, 1994, 146, 833
  • [28] A. A. Kaminskii, B. V. Mill, A. V. Butashin, K. Kurbanov, L.A. Polyakova, Phys. Status Solidi , 1990, 120, 253
  • [29] N. N. Zhang, X. X. Jiang, Y. N. Wang, X. R. Pan, Y. Y. Zhang, B. Liu, Y. G. Yang, X. P. Wang, J. Alloys Compd., 2023, 932, 167626
  • [30] N. N. Zhang, Y. G. Yang, X. Y. Yan, M. Q. Wang, Y. Y. Zhang, H. D. Zhang, R. Zhang, C. C. Qiu, F. D. Chen, J. Y. Wang, Ceram. Int., 2023, 49, 16080
  • [31] H. Yuan, Y. Bai, G. Wang, L. Xu, H. Jia, X. Sun, Ceram. Int., 2023, 49, 18000
  • [32] R. Satheesh, M. Venugopal, S. P. Anusree, V. S. Dhanya, H. Padma Kumar, J. Mol. Struct., 2023, 1281, 135111
  • [33] M. Gao, B. Cao, Z. Liao, L. Qiu, Y. He, B. Dong, Mater. Res. Bull, 2024, 172, 112667
  • [34] Y. Li, S. Xu, Y. Gao, Y. Cao, X. Zhang, H. Yu, Y. Wang, T. Liu, B. Chen, Ceram. Int., 2024, 50, 13378
  • [35] Kumari, Anu, A. Prasad, P. Rohilla, A. S. Rao, Mater. Sci.: Mater. Electron., 2023, 34, 907
  • [36] S.A. Azizana, S. Hashima, N. A. Razaka, M. H. A. Mhareb, Y.S.M. Alajerami, N. Tamchek, J. Mol. Struct., 2014, 1076, 20
  • [37] G. N. Carneiro, H. Vargas, J. A. Sampaio, J. Alloys Compd., 2019, 777, 1327
  • [38] V. Vidhi, W. Ankita; Anu; A. S. Rao, Opt. Mater., 2022, 132, 112863
  • [39] S. F. Hathot, B. M. Al Dabbagh, H. Aboud, Chalcogenide Letters, 22024, 21, 201
  • [40] X. Gong, S. He, L. Liu, Y. Huang, L. Zhang, F. Yuan, Z. Lin. J. Lumin., 2024, 267, 120383
  • [41] I. Bulusa, A. S. Alqarni, N. N. Yusof, I. M. Danmallam , M. Alomar, S. K. Ghoshal, Opt Laser Technol, 2024, 170, 110327
  • [42] X. Zhao, S. Xu, L. Wang, Y. Guo, W. Bao, H. Zhang, J. Lumin., 2024, 266, 120319
  • [43] N. Jarucha, Y. Ruangtaweep, P. Meejitpaisan, S. Kothan, H. J. Kim, J. Kaewkhao, Optik, 2024, 299, 171604
  • [44] A. Balan, M. M. R. Kennedy, V. Manikantan, A. Alexander, G. S. Varalakshmi, S. Ramasamy, A. S. Pillai, I. V. M. V. Enoch, Bull. Mater. Sci., 2024, 47, 28
  • [45] J. Liu, R. Li , B. Yang, ACS Cent. Sci., 2020, 6, 2179
  • [46] K. Wei, P. Li, Y. Duan, S. Zhang, L. Chen, S. Xu, J. Zhang, J. Non-Cryst. Solids, 2021, 57015, 121022.
  • [47] A. R. Amani-Ghadim, M. Mousavi, F. Bayat, J. Power Sources, 2022, 53915, 231624
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82412718-c8ae-49d1-912d-12737eb8e5c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.