PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of Aggregatic Stability and Bactericidal Activities of Nanosilver Colloidal Solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of SAS of different chemical nature on aggregate stability and bactericidal action of nano silver colloidal solutions is investigated. Colloidal solutions of silver were obtained by restoring the argentum nitrate agent in a neutral medium. With the help of spectrophotometric method, it has been proved that such solutions are characterized by high aggregate stability compared with the use of other traditional reducing agents. Anionic SAS (sodium dodecylsulfate and sulfanol) and nonionic SAS (OS-20) increase aggregate stability of nano silver solutions, while cationogenic SAS − alcamone promotes rapid coagulation and aggregation of nano silver particles. The study of bactericidal action of the solutions to the E.coli are showed that the nano silve colloidal solution with or without presence of OS-20 and alcamone completely inhibit the growth of colonies of E.coli, that is, it’s have high bactericidal properties.
Rocznik
Strony
40--50
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Mykolaiv V.O., Sukhomlynskyi National University, Mykolaiv, Ukraine
  • Mykolaiv V.O., Sukhomlynskyi National University, Mykolaiv, Ukraine
  • Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
  • Rzeszow University of Technology, Rzeszow, Poland
  • Rzeszow University of Technology, Rzeszow, Poland
  • Rzeszow University of Technology, Rzeszow, Poland
Bibliografia
  • Alexander, J.W. (2009). History of the medical use of silver. Surgical infections, 10(3), 289-299.
  • Baker, C., Pradhan, A., Pakstis, L. et al. (2005). Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol., 2, 244-249.
  • Bernavsky, Z. (2006). Colloidal silver. Natural antibiotic substitute. RF, 24 (in rush.)
  • Choi, O. T. et al. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res., 43(7), 1879-1886.
  • Danilczuk, M., Lund, A., Saldo, J. et al. (2006). Conduction electron spin resonance of small silver particles. Spectrochimaca Acta, 63(A), 189-191.
  • Holt, K.B., Bard, A.J. (2005). Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry, 44(39), 13214-13223.
  • Kim, J. S., Kuk, E., Yu, K.N. et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95-101.
  • Li, W.R., Xie, X.B., Shi, Q. S. et al. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 85(4), 1115-1122.
  • Litvinova, O.I. (2016). Development of the method of providing antibacterial properties to nonwoven fabrics using silver nanoparticles. Scientific developments of youth at the present stage.
  • Liu, J., Pennell, K., Hurt, R. (2011). Kinetics and mechanisms of nanosilver oxysulfidation. Environ. Sci. Technol., 45, 7345-7353.
  • Lok, C.N., C. Ho, R. Chen. (2007). Silver nanoparticles: partial oxidation and antibacterial activities J. Biol. Inorg. Chem., 12, 527-534.
  • Lok, C. N., Ho, C. M., Chen, R. et al. (2008). Proteomic identification of the Cus system as a major determinant of constitutive Escherichia coli silver resistance of chromosomal origin. J. Proteome Res., 7(6), 2351-2356.
  • Medical microbiology, virology and immunology (2009). A textbook for the undergraduate and postgraduate students, edited by V.P. Shirokobokov, Vinnitsa: New Book, 952. (in ukr.).
  • Priskoka, A.O. (2016). Experimental Substantiation of Pharmacological Properties of Silver Nanoparticles: Autoref. dis... Candidate pharmacy sciences: 14.03.05, − Kh., 20. (in ukr.)
  • Savchenko, D.S. (2012). Investigation of antimicrobial properties of nanocomposite "Fine silica-clusters of silver", preparation "Silix" and silver nitrate. Zaporozhye Medical Journal, 4, 124-128. Access mode: http://nbuv.gov.ua/UJRN/Zmzh_2012_4_40. (in ukr.)
  • Shahverdi, A.R. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli, Nanomedicine, 3, 168-171.
  • Shulgina, T.A., Norkin, I.A., Puchinyan, D.M. (2012). Antibacterial Action of Water Dispersions of Silver Nanoparticles on Grammotric Micro-Organisms (on the example of Escherichia Coli). Basic research, 7-2, 424-426. (in rush).
  • Xiu, Z.M., Ma, J., Alvarez, P.J. (2011). Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol., 45, 9003-9008.
  • Yamanaka, M., Hara, K., Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy − filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol., 71, 7589-7593.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82394c47-ef83-47ab-88ca-003aa352b77e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.