PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

How Does Indonesian Scientific Production on Renewable Energy Successfully Support the Policy Design? A Journey Towards Sustainable Energy Transition

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
W jaki sposób rozwój indonezyjskiej nauki w zakresie odnawialnych źródeł energii skutecznie wspiera projektowanie polityki? Podróż w kierunku zrównoważonej energetyki
Języki publikacji
EN
Abstrakty
EN
The aim to achieve the target of a 23% share of sustainable energies in the total Indonesia’s primary energy supply requires enormous amounts of works. Indonesia’s scientific knowledge production can support a successful transition to renewables. However, policy makers struggle to determine how the transition benefits from the scientific production on renewable. A bibliometric study using scientific publication data from the Web of Science (WoS) is used to probe how Indonesian scientific knowledge production can support the policy design for transition to sustainable energy. The seven focused disciplines are geothermal, solar, wind, hydro, bio, hybrid, and energy policy and economics. Based on the data from the above-listed disciplines, a deeper analysis is conducted, and implications to the policy design are constructed. The study reveals that bio energy is the focus of the research topics produced in Indonesia, followed by solar and hydro energy. Most RE research is related to the applied sciences. The innovation capability in the form of technology modifiers and technology adapters supports the transition to sustainable energy in Indonesia. The research on bio energy, however, is characterized by higher basic knowledge than research on solar and hydro energy. This suggests low barriers to the access to the resources and to the completion of bio research in Indonesia. Designing Indonesian energy policy by comprising discriminatively specific sustainable energy sources in the main policy instruments can therefore accelerate the sustainable transition and development.
PL
Cel polegający na osiągnięciu 23% udziału odnawialnych źródeł energii w całkowitym zaopatrzeniu Indonezji w energię pierwotną jest bardzo trudnym zadaniem. Rozwój wiedzy naukowej może pomóc w pomyślnej jego realizacji. Decydenci mają jednak trudności z ustaleniem, jak wiele w tym procesie faktycznie zależy od nauki. Badanie bibliometryczne, z wykorzystaniem danych o publikacjach naukowych z bazy Web of Science (WoS), pozwalają wykazać, w jaki sposób rozwój indonezyjskiej wiedzy naukowej może wesprzeć projekt polityki przejścia na zrównoważoną energię. Siedem ukierunkowanych dyscyplin to polityka geotermalna, słoneczna, wiatrowa, wodna, bio-, hybrydowa oraz energetyczna i ekonomiczna. Na podstawie danych z wyżej wymienionych dyscyplin przeprowadzana jest głębsza analiza i konstruowane są implikacje dla polityki. Okazuje się, że ​​bioenergia jest głównym przedmiotem badań prowadzonych w Indonezji, a następne miejsca zajmują energia słoneczna i wodna. Większość badań nad odnawialnymi źródłami energii dotyczy nauk stosowanych. Ponadto wspieranie innowacji wspiera przejście do zrównoważonej energii. Badania naukowe nad bioenergią mają bardziej podstawowy charakter, niż badania odnoszące się do energii słonecznej i wodnej. Sugeruje to łatwy dostęp do zasobów i znaczące zaawansowanie badań nad bioenergią w Indonezji. Opracowanie indonezyjskiej polityki energetycznej, uwzględniającej odnawialne źródła energii i ich specyfikę, może zatem przyspieszyć transformację energetyczną, zgodną z ideą zrównoważonego rozwoju.
Czasopismo
Rocznik
Strony
41--52
Opis fizyczny
Bibliogr. 63 poz., fig., tab.
Twórcy
autor
  • Technische Universität Berlin, Chair of Innovation Economics, Straße des 17. Juni 135, 10623, Berlin, Germany
  • Technische Universität Berlin, Chair of Innovation Economics, Straße des 17. Juni 135, 10623, Berlin, Germany
  • National Standardization Agency of Indonesia (BSN), Directorate of Laboratory Accreditation, Jl. M.H. Thamrin No.8, 10340, Jakarta Pusat, Indonesia
autor
  • Universitas Paramadina, Faculty of Business & Economics, Jl. Gatot Subroto Kav. 97, 12790, Jakarta, Indonesia
Bibliografia
  • 1. ARDIN F., RAHARDJO A. & HUDAYA C., 2017, Electricity Price and Subsidy Scenario for Hybrid Power Generations on Off-Grid System, in: International Conference on Control, Electronics, Renewable Energy, and Communication, p. 132-188.
  • 2. ARISAKTIWARDHANA, D., & AKBAR, I., 2018, Reducing Economic Disparity in the Outermost and Border Regions: Assessing Barriers and Opportunities in the Electricity Sector. The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018), E3S Web Conf., Volume, 73, 01001.
  • 3. ASIA-PACIFIC ECONOMIC COOPERATION (APEC) – ORGANISATION FOR ECONOMIC COOPERATION AND DEVELOPMENT (OECD), 2003, APEC-OECD Integrated Checklist on Regulatory Reform, OECD Publishing, Paris.
  • 4. BARLOW P., MCKEE M., BASU S., STUCKLER D., 2017, The health impact of trade and investment agreement: a quantitative systematic review and network co-citation analysis, in: Globalization and Health, vol. 13, p. 1-13.
  • 5. BASEDOW R., KAUFFMANN C., 2016, International Trade and Good Regulatory Practices: Assessing the Trade Impacts of Regulation, OECD Regulatory Policy Working Papers. No. 4, OECD Publishing, Paris.
  • 6. BOYLE F., SHERMAN D., 2006, Scopus: The product and its development, in: The Serials Librarian, 49(3), p. 147-153.
  • 7. BUNYAMIN A., PURNOMO D., 2017, Biomass potential resources identification in Togean Islands, Central Sulawesi, in: IOP Conference Series-Earth and Environmental Science, 65.
  • 8. CHAVARRO D., RÀFOLS I., TANG P., 2018, To what extent is inclusion in the Web of Science an indicator of journal ‘quality’?, in: Research Evaluation, 27(2), p. 106-118.
  • 9. CHADEGANI A. A., SALEHI H., MD. YUNUS M., FARHADI H., FOOLADI M., FARHADI M., EBRAHIM N. A., 2013, A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases, in: Asian Social Science, 9(5), p. 18-26.
  • 10. CHOPRA S., VIRMANI M., 2017, MDG’s to SDG ’s: A necessary shift, in: International Journal of Applied Research, 3(6), p. 836-839.
  • 11. CELIKATAS M. S., SEVGILI T., KOCAR G., 2018, A snapshot of renewable energy research in Tukey, in: Renewable Energy, 34, p. 1479-1486.
  • 12. COSTA M., DESMARAIS B.A., HIRD J.A., 2016, Science Use in Regulatory Impact Analysis: The Effects of Political Attention and Controversy, in: Review of Policy Research, 33(3), p. 251-259.
  • 13. COSTANTINI V., CRESPI F., PALMA A., 2017, Characterizing the policy mix and its impact on ecoinnovation: A patent analysis of energy efficient technologies, in: Research Policy, 46, p. 799-819.
  • 14. DANI S., WIBAWA A., 2018, Challenges and policy for biomass energy in Indonesia, in: International Journal of Business, Economics, and Law, 15(5), p. 41-47.
  • 15. DESMARAIS B.A., HIRD J.A., 2014, Public policy's bibliography: The use of research in US regulatory impact analyses, in: Regulation & Governance, 8(4), p. 497-510.
  • 16. DINCER I., 2000, Renewable energy and sustainable development: A crucial review, in: Renewable and Sustainable Energy Reviews, 4(2), p. 157-175.
  • 17. DUTU R., 2016, Challenges and policies in Indonesia’s energy sector., in: Energy Policy, 98, p. 513- 519.
  • 18. FAANZIR S., ANSHARI M., 2017, Emission abatement cost analysis of hybrid marine current/photovoltaic/diesel system operation, presented at: 2017 International Seminar on Application for Technology of Information and Communication.
  • 19. GRUBB M., 2014, Planetary economics: energy, climate change and the three domains of sustainable development, Routledge, New York.
  • 20. HILLERBRAND R., 2018, Why Affordable Clean Energy Is Not Enough. A Capability Perspective on the Sustainable Development Goals, in: Sustainability, 10, 2485.
  • 21. HOLLAWAY L.C., 2013, Sustainable Energy Production: Key Material Requirements, in: From standards to quality infrastructure: a review of impact studies and an outlook, ed. Bai J., Advanced FibreReinforced Polymer (FRP) Composites for Structural Applications, Woodhead Publishing Limited, United Kingdom.
  • 22. ISMAIL M.S., MOGHAVVEMI M., MAHLIA T.M.I., MUTTAQI K.M., MOGHAVVEMI S., 2015, Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis, in: Renewable & Sustainable Energy Reviews, 42, p. 726-734.
  • 23. JACOBZONE S., CHOI C., MIGUET C., 2007, Indicators of Regulatory Management Systems, in: OECD Working Papers on Public Governance, OECD Publishing, Paris.
  • 24. LAW J., BAUIN S., COURTIAL J. P., WHITTAKER J., 1988, Policy and the mapping of scientific change: a co-word analysis of research into environmental acidification, in Scientometrics, 14(3-4), p. 251-264.
  • 25. LINDMAN Å. & SÖDERHOLM P., 2016, Wind Energy and Green Economy in Europe: Measuring Policy-induced Innovation Using Patent Data, in: Applied Energy, 176, p. 1351-1359.
  • 26. LEYDESDORFF L., COZZENS S., VAN DER BESSELAAR P., 1993, Tracking areas of strategic importance using scientometrics journal mappings, in: Research Policy, 23, p. 217-229.
  • 27. LEYDESDORFF L., GAUTHIER E., 1996, The evaluation of national performance in selected priority areas using scientometrics methods, in: Research Policy, 25, p. 431-450.
  • 28. LUND H., 2007, Renewable energy strategies for sustainable development, in: Energy, 32(6), p. 912- 919.
  • 29. KUNGL G., GEELS F. W., 2018, Sequence and alignment of external pressures in industry destabilization: understanding the downfall of incumbent utilities in the German energy transition, in: Environmental Innovation and Societal Transition, 26, p. 78- 100.
  • 30. MANZANO-AGUGLIARO F., ALCAYDE A., MONTOYA F. G., ZAPATA-SIERRA A., GIL C., 2013, Scientific production of renewable energies worldwide: An overview, in: Renewable and Sustainable Energy Reviews, 18, p. 134-143.
  • 31. MEHANG T.S., TANOTO Y., SANTOSO M., 2016, Potential of Small Size Hybrid Diesel-Photovoltaic to Improve Sub-District Supply Duration in East Sumba, Indonesia, in: International Journal of Renewable Energy Research, 6(3), p. 964-969.
  • 32. MINISTRY OF ENERGY AND MINERAL RESOURCES (MEMR), 2017, https://www.esdm.go.id/ assets/media/content/content-rasio-elektrifikasi.pdf (05.06.2018).
  • 33. MINISTRY OF ENERGY AND MINERAL RESOURCES (MEMR), 2018, http://km.reddplusid.org /d/006c64491cb8acf2092ce0e0341797fe (05.06.2018).
  • 34. MONGEON P., PAUL-HUS A., 2016, The journal coverage of Web of Science and Scopus: a comparative analysis, in: Scientometrics, 106(1), p. 213-228.
  • 35. MONTOYA F. G., MONTOYA M. G., GÓMEZ J., MANZANO-AGUGLIARO F., ALAMEDA-HERNÁNDEZ E., 2014, The research on energy in spain: A scientometric approach, in: Renewable and Sustainable Energy Reviews, 29, p. 173-183.
  • 36. MULYANA C., FITRIANI N.I., SAAD A., YULIAH Y., 2017, Empowerment model of biomass in west java, in: IOP Conference Series-Earth and Environmental Science, no. 65.
  • 37. NEGRO S. O., ALKEMADE F., HEKKERT M. P., 2012, Why does renewable energy diffuse so slowly? A review of innovation system problems, in: Renewable and Sustainable Energy Reviews, 16, p. 3836- 3846.
  • 38. NERINI F.S., TOMEI J., TO L.S., BISAGA I., PARIKH P., BLACK M., BORRION A., SPATARU C., BROTO V. C., ANANDARAJAH G., MILLIGAN B., MULUGETTA Y., 2018, Mapping synergies and trade-offs between energy and the Sustainable Development Goals, in: Nature Energy, 3, p. 10- 15.
  • 39. NIZAM M., WICAKSONO F.X.R., 2018, Design and Optimization of Solar, Wind, and Distributed Energy Resource (DER) Hybrid Power Plant for Electric Vehicle (EV) Charging Station in Rural Area, in: 5 th International Conference on Electric Vehicular Technology (ICEVT), p. 41-45.
  • 40. OECD, 1997, http://www.oecd.org/science/inno/ 2101733.pdf (05.06.2018).
  • 41. PRESIDENTIAL DECREE (PP) NO. 22 YEAR 2017, 2017, National Energy Planning, The Secretary Cabinet of the Republic of Indonesia, Jakarta.
  • 42. PRESIDENTIAL DECREE (PP) NO. 79 YEAR 2017, 2017, Government Work Plans for 2018, The Secretary Cabinet of the Republic of Indonesia, Jakarta.
  • 43. PRESIDENTIAL DECREE (PP) NO. 72 YEAR 2018, 2018, Government Work Plans for 2019, The Secretary Cabinet of the Republic of Indonesia, Jakarta.
  • 44. REPANOVICI R.M., NEDELCU, 2018, 3D printing new direction and collaboration in scientific research. A scientometric study using Web of Science, Clarivate Analytics database, in: MATEC Web of Conferences, no. 178.
  • 45. RISTEKDIKTI, 2017, http://rirn.ristekdikti.go.id (05.06.2018).
  • 46. REN21, 2018, Renewable 2018: Global Status Report, REN21 Secretariat, Paris.
  • 47. RIZZI F., VAN ECK N. J., FREY M., 2014, The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management, in: Renewable Energy, 62, p. 657-671.
  • 48. ROSYIDI A.P., BOLE-RENTEL T., LESMANA S.B., IKHSAN J., 2014, Lessons Learnt from the Energy Needs Assessment carried out for the Biogas Program for Rural Development in Yogyakarta, Indonesia, in Procedia Environmental Sciences, 20, p. 20-29.
  • 49. ROCHMYANINGSIH D., 2018, How to shine in Indonesian science? Game the system. in: Science, 363(6423), p. 111-112.
  • 50. RUMBAYAN M., NAGASAKA K., 2018, Techno Economical Study of PV-Diesel Power System for a Remote Island in Indonesia: A Case Study of Miangas Island, in: 8 th International Conference on Future Environment and Energy, no 150.
  • 51. SADORSKY P., 2011, Some future scenarios for renewable energy, in: Futures, 43(10), p. 1091-1104.
  • 52. SANZ-CANSADO E., GARCIA-ZORITA J. C., SERRANO-LÓPEZ A. E., LARSEN B., INGWERSEN P., 2012, Renewable energy research 1995-2009: a case study of wind power research in EU, Spain, Germany and Denmark, in Scientometrics, 95, p. 197-224.
  • 53. STUCKLER D., REEVES A., KARANIKOLOS M., MCKEE M., 2015, The health effects of the global financial crisis: Can We reconcile the differing views? a network analysis of literature across disciplines, in: Health, Economy Policy, and Law, 10(1), p. 83-99.
  • 54. SUKIRMAN Y.A., 2018, Developing a green lending model for renewable energy project (case study electricity from biogas fuel at Palm Oil Industry), in: IOP Conference Series-Earth and Environmental Science, no. 131.
  • 55. SUTRISNO A., VENNIX J.A.M., SYAIFUDIN N., 2015, Improving Renewable Energy Transition Acceptance: A Simulation Gaming Approach on a Multi Actor Setting in the Netherlands, in: Makara Journal of Technology, 19(3), p. 103-112.
  • 56. SOMMENG A.N., ANDITYA C., 2018, Boosting renewable power generation in Indonesia electricity sector: a policy action by the government, in: E3S Web of Conferences, no. 67.
  • 57. TRUJILLO C. M., LONG T. M., 2018, Document cocitation analysis to enhance transdisciplinary research, in: Science Advances, 4(1), p. 1-9.
  • 58. UĞURLU E., 2019, Renewable Energy Strategies for Sustainable Development in the European Union, in: Renewable Energy, eds. Kurochkin D., Shabliy E., Shittu E., Palgrave Macmillan, Cham.
  • 59. VAN ECK N. J., WALTMAN L., 2010, Software survey: VOSviewer, a computer program for bibliometric mapping, in: Scientometrics, 84, p. 523-538.
  • 60. VAN LEEUWEN T. N., MOED H. F., TIJSSEN R. J. W., VISSER M. S., VAN RAAN A. F. J., 2001, Language biases in the coverage of the Science Citation Index and its consequences for international comparisons of national research performance, in: Scientometrics, 51(1), p. 335-346.
  • 61. WAHYUDI J., KURNANI T.B.A., CLANCY J., 2015, Biogas Production in Dairy Farming in Indonesia: A Challenge for Sustainability, in: International Journal of Renewable Energy Development, 4(3), p. 20-29.
  • 62. WICAKSANA H., MUSLIM M.M., HUTAPEA S.F., PURWADI A., HAROEN Y., 2016, Design, Implementation and Techno-Economic Analysis of Hybrid PV-Diesel for Off-Grid System in Sebira Island, in: 3 rd Conference on Power Engineering and Renewable Energy, p. 39-44.
  • 63. ZWEIFEL P., PRAKTIKNJO A., ERDMANN G., 2017, Energy economics: theory and applications, Springer, Berlin.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8236e37d-2390-446d-b74a-b25126a63cec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.