PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Zinc and lead in aquatic plants and bottom sediments of anthropogenic rivers

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to assess contamination of bottom sediments with heavy metals (lead and zinc) and its influence on the dominant macrophytes in selected four Polish anthropogenic rivers. Due to metal concentration, the sediments were classified in terms of their purity by three criteria: geochemical criterion, LAWA classification and ecotoxicological criterion. The studies revealed that tested macrophytes (Common Reed and Yellow Iris) were characterized by low and very low accumulation coefficient translocation factors of heavy metals. Common Reed was the plant which, to the greatest extent, accumulated heavy metals and therefore it was proposed as an indicator of lead and zinc contamination of river sediments. Heavy metals were mainly accumulated in roots and were not transported to their shoots as evidenced by very low translocation factors. Yellow Iris accumulated heavy metals to a lesser extent than Common Reed, however, it showed higher translocation factors of these metals. Zinc was preferentially collected by both plants in comparison with lead, as confirmed by higher translocation factors for zinc.
PL
Celem pracy była ocena stopnia zanieczyszczenia osadów dennych metalami ciężkimi (ołowiem i cynkiem) oraz ich wpływu na dominujące makrofity w wybranych czterech przekształconych antropogenicznie rzekach w Polsce. Ze względu na stężenie metali osady rzeczne zostały sklasyfikowane pod kątem ich czystości według trzech kryteriów: kryterium geochemicznego, klasyfikacji LAWA i kryterium ekotoksykologicznego. Badania wykazały, że badane makrofity (trzcina pospolita i kosaciec żółty) charakteryzowały się niskimi i bardzo niskimi współczynnikami akumulacji i translokacji metali ciężkich. Trzcina pospolita to roślina, która w największym stopniu akumulowała metale ciężkie i dlatego została zaproponowana, jako wskaźnik stopnia skażenia osadów rzecznych ołowiem i cynkiem. Metale ciężkie gromadziły się głównie w korzeniach i nie były transportowane do pędów, o czym świadczą bardzo niskie wartości współczynników translokacji. Kosaciec żółty akumulował metale ciężkie w mniejszym stopniu niż trzcina pospolita, jednakże w tym przypadku zaobserwowano wyższe współczynniki translokacji metali. Cynk był preferencyjnie pobierany przez obie rośliny w porównaniu do ołowiu, co potwierdzono wyższymi wartościami współczynników translokacji.
Rocznik
Strony
125--134
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Environmental Biotechnology Department, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice
autor
  • Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 8, 44-100 Gliwice
Bibliografia
  • [1] Adamiec, E. (2004). The role of the suspension in trace metal contamination of the Odra River. Publishing and Educational Science.
  • [2] Adamiec, E, Helios-Rybicka, E. (2002). Distribution of pollutants in the Odra River system part V. Assessment of total and mobile heavy metals content in the suspended matter and sediments of the Odra river system and recommendations for river chemical monitoring. Polish Journal of Environmental Studies, 11, 675-688.
  • [3] Ahlf, W., Wellerhaus, S. (1984). Trace metals in the Elbe River estuaries. 3rd Inter. Symp., in: Interactions between sediments and water. Geneva.
  • [4] Allan, J. (1998). Ecology of rivers. PWN Warszawa.
  • [5] Allen, H., Janssen, C. (2006). Incorporating bioavailability into criteria for metals. Soil Water Pollution Monitoring, 69, 93-105.
  • [6] Baker, A., Brooks, R. (1989). Terrestrials higher plants which hyper accumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81-126.
  • [7] Bojakowska, I., Sokołowska, G. (1998). Geochemical purity class aquatic sediment. Geology Revision, 46; 49-54.
  • [8] Bravo, A., Loizeau, J.-L., Ancey, L., Ungureanu, V., Dominik, J. (2009). Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania. Environmental Science and Pollution Research, 16(1), 66-75.
  • [9] Calmano, W., Ahlf, W., Bening, J. (1992). Chemical mobility and bioavailability of sediment-bound heavy metals influenced by salinity, [in:] Sediment/Water Interactions. Kluwer Academic Publ., Dordrecht.
  • [10] Campbell, C., Plank, C. (1998). Preparation of plant tissue for laboratory analysis, in: Kalra, Y.P. (Ed.), Handbook of reference methods for plant analysis. CRC Press, Boca Raton, FL.
  • [11] Czajkowska, A. (2008). The impact of human pressure on the quality and the water balance in the catchment area of the river Bierawka. Wydawnictwo Politechniki Śląskiej, Gliwice.
  • [12] Deng, H., Ye, Z., Wong, M. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29-40.
  • [13] Dojlido, J. (1987.).Water chemistry. Arkady,Warsaw.
  • [14] Fayiga, A., Ma, L. (2006). Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. The Science of The Total Environment, 359, 17-25.
  • [15] Gorlach, E., Gambuś, F. (2000). Potentially toxic trace elements in soils (excess, toxicity and counteract. Problem notebooks Progress of Agricultural Sciences, 472, 275-296.
  • [16] Gupta, A., Sinha, S. (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere, 64, 161-173.
  • [17] Kabata-Pendias, A. (2002). Zinc in the environment-ecological problems and methodical, Academy of Sciences, Scientific Papers, 11-18.
  • [18] Kolada, A. (2008). The use of macrophytes in assessing the quality of lakes in Europe in the light of the requirements of the Water Directive - a review of the issue. Environment and Natural Resourses, 37, 24-25.
  • [19] Kostrzewski, A., Mazurek, M., Zwoliński, Z. (1993). Seasonal variability of the chemical composition of the waters of the upper Parsęta (West Pomerania) Scientific Journal of the Scientific Committee “Man and Environment”. Ossolineum, Wroclaw, 79-99.
  • [20] Lis, J., Pasieczna, A. (1995). Polish Geochemical Atlas 1: 2500000. Warsaw.
  • [21] Łaszewska, A., Kowol, J., Wiechuła, D., Kwapuliński, J. (2007). Accumulation of metals in selected species of medicinal plants from the area of Beskid Slaski and Beskid Mountains. Problemy Ecologiczne, 11, 285-291.
  • [22] MacDonald, D., Ingersoll, C., Berge T. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20-31.
  • [23] Małachowska Jutsz, A., Gnida, A. (2015). Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41, 104-114.
  • [24] McLaughlin, N., Zarcinas, M., Stevens, B., Cook, D. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31(11-14), 1661-1700.
  • [25] Miretzky, P., Saralegui, A., Cirelli, A. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57(8), 997-1005.
  • [26] Mishra, V., Tripathi, B. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99(15), 7091-7097.
  • [27] Rybicka, E., Adamiec, E., Aleksander-Kwaterczak, U. (2005). Distribution of trace metals in the Odra River system: Water-suspended matter-sediments. Limnologica, 35(3), 185-198.
  • [28] Salminen, R., Batista, M., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J.,Marsina, K.,Mazr, T. (2005). Geochemical Atlas of Europe. Part 1 - Background Information, Methodology and Maps. Geological Survey of Finland, Espoo, Finland.
  • [29] Salomons, W., Brils, J. (2004). Contaminated sediments in European river basins - Â Final Draft. Eur. Sediment Res. Netw. - SedNET 6.
  • [30] Samecka-Cymerman, A., Kempers, A. (2007). Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Archives of Environmental Contamination and Toxicology, 53, 198-206.
  • [31] Skorbiłowicz, E. (2015). Zinc and lead in bottom sediments and aquatic plants in river Narew. Journal of Ecological Engineering, 16(1), 127-134.
  • [32] Szalińska, E. (2011). The role of sediments in the assessment of environmental quality continental waters. Environmental Engineering Series, Cracow University of Technology, Cracow.
  • [33] Weber,W., Voice, T., Pirbazari,M., Hunt, G., Ulanoff, D. (1983). Sorption of hydrophobic compounds by sediments, soils and suspended solids-II. Sorbent evaluation studies. Water Research, 17(10), 1443-1452.
  • [34] Zerbe, J., Sobczyński, T., Elbanowska, H., Siepak, J. (1999). Speciation of heavy metals in bottom sediments of lakes. Polish Journal of Environmental. Studies, 8(5), 331-339.
  • [35] Zhang, H., Smith, J., Oyanedel-Craver, V. (2012). The effect of natural water conditions on the antibacterial performance and stability of silver nanoparticles capped with different polymers. Water Research, 46(3), 691-699.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8236551d-c8c4-40ad-82a8-0fbe4f75273b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.