PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal input signal design for fractional-order system identification

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optimal design of excitation signal is a procedure of generating an informative input signal to extract the model parameters with maximum pertinence during the identification process. The fractional calculus provides many new possibilities for system modeling based on the definition of a derivative of noninteger-order. A novel optimal input design methodology for fractional-order systems identification is presented in the paper. The Oustaloup recursive approximation (ORA) method is used to obtain the fractional-order differentiation in an integer order state-space representation. Then, the presented methodology is utilized to solve optimal input design problem for fractional-order system identification. The fundamental objective of this approach is to design an input signal that yields maximum information on the value of the fractional-order model parameters to be estimated. The method described in this paper was verified using a numerical example, and the computational results were discussed.
Rocznik
Strony
37--44
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
autor
  • Bialystok University of Technology, Faculty of Computer Science, Wiejska 45A, 15-351 Bialystok, Poland
Bibliografia
  • [1] C.A. Monje, Y. Chen, B. Vinagre, D. Xue, and V. Feliu, Fractional orders Systems and Controls: Fundamentals and Applications, Advances in Industrial Control. Springer Verlag, London, 2010.
  • [2] Y. Chen, I. Petráš, and D. Xue, “Fractional order control – a tutorial”, In Proc. ACC’09. American Control Conference, 1397–1411 (2009).
  • [3] P.J. Torvik and R.L. Bagley, On the appearance of the fractional derivative in the behavior of real materials. Transactions of the ASME’84, 51(4), 294–298 (1984).
  • [4] A. Oustaloup, F. Levron, B. Mathieu, and F. Nanot, “Frequency-band complex noninteger differentiator: characterization and synthesis”, IEEE Transactions on Circuits and Systems, Fundamental Theory and Applications, 47(1), 25–40 (2000).
  • [5] M. Lewandowski and M. Orzyłkowski, “Fractional-order models: The case study of the supercapacitor capacitance measurement”, Bull. Pol. Ac.: Tech. 65 (4), 449–457 (2017).
  • [6] K. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
  • [7] R. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Redding, 2006.
  • [8] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [9] B. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, 2003.
  • [10] I. Petras, Fractional-Order Nonlinear Systems, Springer, New York, 2011.
  • [11] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [12] D. Valério and J. Costa, An Introduction to Fractional Control, IET, London, 2013.
  • [13] H. Sheng, Y.D. Chen, and T.S. Qiu, Fractional Processes and Fractional-order Signal Processing, Springer, London, 2012.
  • [14] C. Monje, B. Vinagre, V. Feliu, and Y. Chen, “Tuning and autotuning of fractional order controllers for industry applications”, Control Engineering Practice, vol. 16(7), 798–812 (2008).
  • [15] R. Kalaba and K. Spingarn, Control, identification, and input optimization, Plenum Press, New York, USA, 1982.
  • [16] L. Ljung, System identification: Theory for the user, Prentice Hall, Inc., Upper Saddle River, New Jersey, USA, 1999.
  • [17] A.J. Hugo, “Process controller performance monitoring and assessment”, Control. Arts Inc., (2001). Available online: http://www.controlarts.com/
  • [18] M. Hussain, “Review of the applications of neural networks in chemical process control–simulation and on–line implementation”, Artificial Intelligence in Engineering 13, 55–68 (1999).
  • [19] X. Bombois, G. Scorletti, M. Gevers, P.M.J. Van den Hof, and R. Hildebrand, “Least costly identification experiment for control,” Automatica 42, 1651–1662 (2006).
  • [20] S. Narasimhan, R. Rengaswamy, “Multi-objective optimal input design for plant friendly identification”, Proceeding of the American Control Conference, Seattle, Washington, USA, 1304‒1309, (2008).
  • [21] D. Rivera, H. Lee, M. Braun, and H. Mittelmann, “Plant friendly system identification: A challenge for the process industries”, In: 13th IFAC Symposium on System Identification (SYSID 2003), Rotterdam, Netherlands, (2003).
  • [22] E. Rafajłowicz and W. Rafajłowicz, “More safe optimal input signals for parameter estimation of linear systems described by ODE,” System modelling and optimization, IFIP AICT, vol. 443, Springer, Heidelberg, 267–277, (2014).
  • [23] A. Kumar and S. Narasimhan, “Robust plant friendly optimal input design”, In: 10th IFAC Symposium on Dynamics and Control of Process Systems, Mubai, India, 553–558, (2013).
  • [24] A. Kumar, M. Nabil, and S. Narasimhan, “Economical and plant friendly input design for system identification”, European Control Conference, Strasbourg, France, 732–737 (2014).
  • [25] M. Annergren, Ch. Larsson, H. Hjalmarsson, X. Bombois, and B. Wahlberg, “Application-Oriented Input Design in System Identification: Optimal Input Design for Control”, IEEE Control Systems 37(2), 31‒56 (2017).
  • [26] A. De Cock, M. Gevers, and J. Schoukens, “D-optimal input design for nonlinear FIR-type systems: A dispersion-based approach”, Automatica 73, 88‒100 (2016).
  • [27] W. Jakowluk, “Plant friendly input design for parameter estimation in an inertial system with respect to D-efficiency constraints”, Entropy 16(11), 5822–5837 (2014).
  • [28] W. Jakowluk, “Design of an optimal input signal for plantfriendly identification of inertial systems”, Przegląd Elektrotechniczny 85 (6), 125–129 (2009).
  • [29] D. Mozyrska, “Multiparameter Fractional Difference Linear Control Systems”, Discret. Dyn. Nat. Society, vol. 2014, 8 (2014).
  • [30] W. Jakowluk, “Fractional-Order Linear Systems Modeling in Time and Frequency Domains,” In: 16th IFIP TC8 Int. Conference in Computer Information Systems and Inustrial Management, Springer, Heidelberg, 502–513, (2017).
  • [31] C. Tricaud and Y. Chen, “Solving fractional order optimal control problems in riots_95 a general–purpose optimal control problem solver”, In: 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara, Turkey, (2008).
  • [32] W. Malesza and M. Macias, “Numerical solution of fractional variable order linear control system in state-space form”, Bull. Pol. Ac.: Tech. 65 (5), 715–724 (2017).
  • [33] T. Kaczorek, “Minimum energy control of fractional positive continuous-time linear systems using Caputo-Fabrizio definition”, Bull. Pol. Ac.: Tech. 65 (1), 45–51 (2017).
  • [34] T. Kaczorek, “Minimum energy control of fractional positive electrical circuits”, Archives of Electrical Engineering”, vol. 65(2), 191‒201 (2016).
  • [35] D. Mozyrska and D.F.M. Torres, “Modified optimal energy and initial memory of fractional continuous-time linear systems”, Signal Processing, vol. 91(3), Special Issue: SI, 379‒385 (2011).
  • [36] A. Schwartz, E. Polak, and Y. Chen, “Riots-a Matlab toolbox for solving optimal control problems”, Version 1.0 for Windows (1997). Available at: http://www.schwartz-home.com/RIOTS/
Uwagi
EN
The present study was supported by a grand S/WI/1/13 from the Bialystok University of Technology and founded from the resources for research by Ministry of Science and Higher Education.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-822b6a45-efe4-48d2-9e9d-f1128fb8d093
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.