PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Analysis of a Transformerless Dual Active Half-Bridge Converter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a transformerless dual half-bridge converter (TLDAHB). By eliminating the transformer and harnessing the possibility of using a low inductor value, it is possible to minimise the size of the converter. A phase-shift pulse width modulation will result in a wide controlled voltage gain of the converter and operation as buck and boost. The theoretical topology analysis, simulation, and experimental results are presented. Theoretical analysis consists of analysis of power transfer and design. In case of experimental research, particular attention was paid to power transfer and efficiency analysis. Near zero switching transient of voltage in the half-bridge topology results with high efficiency.
Wydawca
Rocznik
Strony
146--158
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Kraków, Poland
  • AGH University of Science and Technology, Kraków, Poland
  • AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • Alonso, J. M., Vina, J., Vaquero, D. G., Martinez, G. and Osorio, R. (2011). Analysis and Design of the Integrated Double Buck–Boost Converter as a High-Power-Factor Driver for Power-LED Lamps. IEEE Transactions on Industrial Electronics, 59(4), pp. 1689–1697. doi: 10.1109/TIE.2011.2109342.
  • Amin, A., Shousha, M., Prodić, A. and Lynch, B. (2015). A transformerless dual active half-bridge DC- DC converter for point-of-load power supplies. In: 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, 133–140. doi: 10.1109/ECCE.2015.7309680.
  • Badawy, M. O., Sozer, Y. and De Abreu-Garcia, J. A. (2016). A Novel Control for a Cascaded Buck–Boost PFC Converter Operating in Discontinuous Capacitor Voltage Mode. IEEE Transactions on Industrial Electronics, 63(7), pp. 4198–4210. doi: 10.1109/TIE.2016.2539247.
  • Bereš, M., Schweiner, D., Kováčová, I. and Kalinov, A. (2017). Current ripple comparison of multi and single phase buck-boost converters. In: 2017 International Conference on Modern Electrical and Energy Systems (MEES), 2017, 260–263. doi: 10.1109/MEES.2017.8248905.
  • Chang, C H., Cheng, C A. and Cheng, H L. (2017). A bidirectional buck-cascaded buck-boost PV inverter with active power filtering. In: IEEE 6th Global Conference on Consumer Electronics (GCCE), 2017, 1–4. doi: 10.1109/GCCE.2017.8229357.
  • Chang, C. H., Cheng, C A. and Cheng, H L. (2018). An interleaved buck-cascaded buck-boost inverter for PV grid-connection applications. In: 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 2860–2865. doi: 10.23919/IPEC.2018.8507516.
  • Everts, J., Krismer, F., Van den Keybus, J., Driesen, J. and Kolar, J. W. (2014). Optimal ZVS Modulation of Single-Phase Single-Stage Bidirectional DAB AC–DC Converters. IEEE Transactions on Power Electronics, 29(8), pp. 3954–3970. doi: 10.1109/TPEL.2013.2292026.
  • Fernão Pires, V., Foito, D., Cordeiro, A. and Silva, J. F. (2018). A single-switch DC/DC buck-boost converter with extended output voltage. In: 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 2018, 791–796. doi: 10.1109/ICRERA.2018.8566996.
  • Kasper, M., Burkart, R. M., Deboy, G. and Kolar, J. W. (2016). ZVS of Power MOSFETs Revisited. IEEE Transactions on Power Electronics, 31(12), pp. 8063–8067. doi: 10.1109/TPEL.2016.2574998.
  • Karshenas, H. R., Daneshpajooh, H., Safaee, A., Jain, P. K. and Bakhshai, A. (2011). Bidirectional DC – DC Converters for Energy Storage Systems. doi: 10.5772/23494.
  • Tong, A., Hang, L., Li, G., Jiang, X. and Gao, S. (2018). Modeling and Analysis of a Dual-Active-Bridge- Isolated Bidirectional DC/DC Converter to Minimize RMS Current with Whole Operating Range. IEEE Transactions on Power Electronics, 33(6), pp. 5302–5316. doi: 10.1109/TPEL.2017.2692276.
  • Wu, H., Mu, T., Ge, H. and Xing, Y. (2016). Full-Range Soft-Switching-Isolated Buck-Boost Converters with Integrated Interleaved Boost Converter and Phase-Shifted Control. IEEE Transactions on Power Electronics, 31(2), pp. 987–999. doi: 10.1109/TPEL.2015.2425956.
  • YOKOGAWA. (2019). WT500 Power Analyzer. WT500 Power Analyzer Datasheet. [online] Available at: https://tmi.yokogawa.com/solutions/products/power-analyzers/ [Accessed 2 May 2021].
  • Zhu, J. and Maksimović, D. (2021). Transformerless Stacked Active Bridge Converters: Analysis, Properties, and Synthesis. IEEE Transactions on Power Electronics, 36(7), pp. 7914–7926. doi: 10.1109/TPEL.2020.3042748.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-822a0a35-e2fe-4894-9738-74be5c09569b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.