PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerosol physical properties in Spitsbergen's fjords: Hornsund and Kongsfjorden during AREX campaigns in 2014 and 2015

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present results of measurements of aerosol physical properties conducted on board of r/v Oceania during two cruises to the Spitsbergen region in 2014 (AREX 2014) and 2015 (AREX 2015). Measurements of aerosol size distribution, aerosol scattering coefficient and black carbon concentrations were made in two different Spitsbergen fjords: Hornsund and Kongsfjorden. The aerosol size distribution was measured in the size range from 0.09 μm to 47 μm using two aerosol size distribution spectrometers and a standard condensation particle counter. For the scattering coefficient an integrating nephelometer was used. Black carbon concentration was measured by an aethalometer. Temporal variabilities in physical properties of aerosol observed during the AREX 2014 and AREX 2015 campaigns were much higher than the differences between both fjords. The basic factors influencing aerosol conditions were advection and local generation of marine aerosol. In 2015 an episode of smoke advection was observed in both fjords causing an increase in the mean black carbon concentration from 7–12 ng m−3 to about 60 ng m−3, and an aerosol scattering coefficient at 550 nm from 2–4 Mm−1 to 12–17 Mm−1. Moreover, under certain conditions statistically significant gradients in aerosol optical properties were observed along the fjord axis reflecting an impact of mountains surrounding the fjords.
Czasopismo
Rocznik
Strony
460--472
Opis fizyczny
Bibliogr. 37 poz., mapy, tab., wykr.
Twórcy
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Centre for Polar Studies National Leading Research Centre, Sosnowiec, Poland
  • Marine Physics Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., Bates, T. S., 1996. Performance characteristics of a high-sensitivity, threewavelength, total scatter/backscatter nephelometer. J. Atmos. Ocean. Technol. 13, 967-986, http://dx.doi.org/10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2.
  • [2] Arnott, W. P., Hamasha, K., Moosmüller, H., Sheridan, P. J., Ogren, J. A., 2005. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 39, 17-29, http://dx.doi.org/10.1080/027868290901972.
  • [3] Anderson, T. L., Ogren, J. A., 1998. Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci. Technol. 29, 57-69.
  • [4] Chen, Y.-C., Hamre, B., Frette, Ø., Blindheim, S., Stebel, K., Sobolewski, P., Toledano, C., Stamnes, J. J., 2013. Aerosol optical properties in Northern Norway and Svalbard. Atmos. Meas. Tech. Discuss. 6, 10761-10795, http://dx.doi.org/10.5194/amtd-6-10761-2013.
  • [5] Damoah, R., Spichtinger, N., Forster, C., James, P., Mattis, I., Wandinger, U., Beirle, S., Wagner, T., Stohl, A., 2004. Around the world in 17 days — hemispheric-scale transport of forest fire smoke from Russia in May 2003. Atmos. Chem. Phys. 4 (5), 1311-1321, http://dx.doi.org/10.5194/acp-4-1311-2004.
  • [6] Draxler, R. R., Hess, G. D., 1998. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 47 (4), 295-308.
  • [7] Hansen, A. D., Rosen, H., Novakov, T., 1984. The aethalometer –— an instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ. 36, 191-196, http://dx.doi.org/10.1016/0048-9697(84)90265-1.
  • [8] Hämeri, K., Koivisto, A., Järvelä, M., Lyyranen, J., Auvinen, A., Jokiniemi, J., 2010. Optical Diameter of Mobility Classified Aerosol. American Association for Aerosol Research. Oregon Convention Center, Portland, OR, USA.
  • [9] Jarraud, M., 2008. Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8). World Meteorological Organisation, Geneva, Switzerland, 681 pp.
  • [10] Lisok, J., Markowicz, K. M., Ritter, C., Makuch, P., Petelski, T., Chilinski, M., Kaminski, J. W., Becagli, S., Traversi, R., Udisti, R., Rozwadowska, A., Jefimow, M., Markuszewski, P., Neuber, R., Pakszys, P., Stachlewskaa, I. S., Struzewska, J., Zielinski, T., 2016. 2014 iAREA campaign on aerosol in Spitsbergen — Part 1: Study of physical and chemical properties. Atmos. Environ. 140, 150-166, http://dx.doi.org/10.1016/j.atmosenv.2016.05.051.
  • [11] McFarquhar, G. M., Ghan, S., Verlinde, J., Korolev, A., Strapp, J. W., Schmid, B., Tomlinson, J. M., Wolde, M., Brooks, S. D., Cziczo, D., Dubey, M. K., Fan, J., Flynn, C., Gultepe, I., Hubbe, J., Gilles, M. K., Laskin, A., Lawson, P., Leaitch, W. R., Liu, P., Xiaohong, L., Lubin, D., Mazzoleni, C., MacDonald, A. M., Moffet, R. C., Morrison, H., Ovchinnikov, M., Shupe, M. D., Turner, D. D., Xie, S., Zelenyuk, A., Bae, K., Freer, M., Glen, A., 2011. Indirect and semi-direct aerosol campaign: the impact of Arctic aerosols on clouds. B. Am. Meteorol. Soc. 92 (2), 183-201.
  • [12] Myhre Lund, C., Toledano, C., Myhre, G., Stebel, K., Yttri, K. E., Aaltonen, V., Johnsrud, M., Frioud, M., Cachorro, V., de Frutos, A., Lihavainen, H., Campbell, J. R., Chaikovsky, A. P., Shiobara, M., Welton, E. J., Tørseth, K., 2007. Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006. Atmos. Chem. Phys. 7 (22), 5899-5915, http://dx.doi.org/10.5194/acp-7-5899-2007.
  • [13] O'Dowd, C., Monahan, C., Dall'Osto, M., 2010. On the occurrence of open ocean particle production and growth events. Geophys. Res. Lett. 37 (19), L19805, http://dx.doi.org/10.1029/2010GL044679.
  • [14] Petelski, T., 2005. Coarse aerosol concentration over the North Polar Waters of the Atlantic. Aerosol Sci. Technol. 39 (8), 695-700, http://dx.doi.org/10.1080/02786820500182362.
  • [15] Petelski, T., Markuszewski, P., Makuch, P., Jankowski, A., Rozwadowska, A., 2014. Studies of vertical coarse aerosol fluxes in the boundary layer over the Baltic Sea. Oceanologia 56 (4), 697-710, http://dx.doi.org/10.5697/oc.56-4.697.
  • [16] Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T., Gong, S. L., 2007. Arctic haze: current trends and knowledge gaps. Tellus B 59 (1), 99-114.
  • [17] Ritter, C., Neuber, R., Schulz, A., Markowicz, K. M., Stachlewska, I. S., Lisok, J., Makuch, P., Pakszys, P., Markuszewski, P., Rozwadowska, A., Petelski, T., Zielinski, T., Becagli, S., Traversi, R., Udisti, R., Gausa, M., 2016. 2014 iAREA campaign on aerosol in Spitsbergen — Part 2: Optical properties from Raman-lidar and insitu observations at Ny-Ålesund. Atmos. Environ. 141, 1-19, http://dx.doi.org/10.1016/j.atmosenv.2016.05.053.
  • [18] Rolph, G. D., 2016. Real-time Environmental Applications and Display sYstem (READY). NOAA Air Resources Laboratory, Silver Spring, MD Website (http://ready.arl.noaa.gov).
  • [19] Rozwadowska, A., Sobolewski, P., 2010. Variability in aerosol optical properties at Hornsund, Spitsbergen. Oceanologia 52 (4), 599-620, http://dx.doi.org/10.5697/oc.52-4.599.
  • [20] Rozwadowska, A., Zieliński, T., Petelski, T., Sobolewski, P., 2010. Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen. Atmos. Chem. Phys. 10 (3), 87-893, http://dx.doi.org/10.5194/acp-10-877-2010.
  • [21] Savelyev, I. B., Anguelova, M. D., Frick, G. M., Dowgiallo, D. J., Hwang, P. A., Caffrey, P. F., Bobak, J. P., 2014. On direct passive microwave remote sensing of sea spray aerosol production. Atmos. Chem. Phys. 14 (21), 11611-11631, http://dx.doi.org/10.5194/acp-14-11611-2014.
  • [22] Schmid, O., Artaxo, P., Arnott, W. P., Chand, D., Gatti, L. V., Frank, G. P., Hoffer, A., Schnaiter, M., Andreae, M. O., 2006. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmos. Chem. Phys. 6 (11), 3443-3462, http://dx.doi.org/10.5194/acp-6-3443-2006.
  • [23] Sharma, S., Andrews, E., Barrie, L. A., Ogren, J. A., Lavoue, D., 2006. Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989-2003. J. Geophys. Res. Atmos. 111 (D14), http://dx.doi.org/10.1029/2005JD006581.
  • [24] Shaw, G. E., 1995. The Arctic haze phenomenon. B. Am. Meteorol. Soc. 76 (12), 2403-2413, http://dx.doi.org/10.1175/1520-0477(1995)076<2403:TAHP>2.0.CO;2.
  • [25] Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., Slutsker, I., 2003. Effect of wind speed on columnar aerosol optical properties at Midway Island. J. Geophys. Res. 108 (D24), 4802, http://dx.doi.org/10.1029/2003JD003879.
  • [26] Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., Ngan, F., 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. B. Am. Meteorol. Soc. 96, 2059-2077, http://dx.doi.org/10.1175/BAMS-D-14-00110.1.
  • [27] Stock, M., Ritter, C., Aaltonen, V., Aas, W., Handorff, D., Herber, A., Treffeisen, R., Dethloff, K., 2014. Where does the optically detectable aerosol in the European Arctic come from? Tellus B 66, http://dx.doi.org/10.3402/tellusb.v66.21450.
  • [28] Stohl, A., Andrews, E., Burkhart, J. F., Forster, C., Herber, A., Hoch, S. W., Kowal, D., Lunder, C., Mefford, T., Ogren, J. A., Sharma, S., Spichtinger, N., Stebel, K., Stone, R., Ström, J., Tørseth, K., Wehrli, C., Yttri, K. E., 2006. Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004. J. Geophys. Res. Atmos. 111 (D22), http://dx.doi.org/10.1029/2006JD007216.
  • [29] Stone, R. S., Herber, A., Vitale, V., Mazzola, M., Lupi, A., Schnell, R. C., Dutton, E. G., Liu, P. S. K., Li, S.-M., Dethloff, K., Lampert, A., Ritter, C., Stock, M., Neuber, R., Maturilli, M., 2010. A threedimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP. J. Geophys. Res. Atmos. 115 (D13), http://dx.doi.org/10.1029/2009JD013605.
  • [30] Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Børre Ørbøk, J., Bischof, K., Papucci, C., Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J.-G., Dallmann, W., 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21 (1), 133-166, http://dx.doi.org/10.1111/j.1751-8369.2002.tb00072.x.
  • [31] Tomasi, C., Kokhanovsky, A. A., Lupi, A., Ritter, C., Smirnov, A., O'Neill, N., Robert, T., Stone, S., Holben, B. N., Nyeki, S., Wehrli, C., Stohl, A., Mazzola, M., Lanconelli, C., Vitale, V., Stebel, K., Aaltonen, V., de Leeuw, G., Rodriguez, E., Herber, A. B., Radionov, V. F., Zielinski, T., Petelski, T., Sakerin, S. M., Kabanov, D. M., Xue, Y., Mei, L., Istomina, L., Wagener, R., McArthur, B., Sobolewski, P. S., Kivi, R., Courcoux, Y., Larouche, P., Broccardo, S., Piketh, S. J., 2015. Aerosol remote sensing in polar regions. Earth-Sci. Rev. 140, 108-157.
  • [32] Treffeisen, R., Tunved, P., Ström, J., Herber, A., Bareiss, J., Helbig, A., Stone, R.S., Hoyningen-Huene, W., Krejci, R., Stohl, A., Neuber, R., 2007. Arctic smoke-aerosol characteristics during a record smoke event in the European Arctic and its radiative impact. Atmos. Chem. Phys. 7 (11), 3035-3053, http://dx.doi.org/10.5194/acp-7-3035-2007.
  • [33] Tunved, P., Ström, J., Krejci, R., 2013. Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station. Ny-Ålesund. Svalbard., 2013. Atmos. Chem. Phys. 13 (7), 3643-3660, http://dx.doi.org/10.5194/acp-13-3643-2013.
  • [34] Vaishya, A., Jennings, S. G., O'Dowd, C., 2012. Wind-driven influences on aerosol light scattering in north-east Atlantic air. Geopys. Res. Lett. 39 (5), L05805, http://dx.doi.org/10.1029/2011GL050556.
  • [35] Virkkula, A., Ahlquist, N. C., Covert, D. S., Arnott, W. P., Sheridan, P. J., Quinn, P. K., Coffman, D. J., 2005. Modification, calibration and a field test of an instrument for measuring light absorption by particles. Aerosol Sci. Technol. 39 (1), 68-83, http://dx.doi.org/10.1080/027868290901963.
  • [36] Walczowski, W., 2013. Frontal structures in the West Spitsbergen Current margins. Ocean Sci. 9 (6), 957-975, http://dx.doi.org/10.5194/os-9-957-2013.
  • [37] Zieliński, T., 2004. Studies of aerosol physical properties in coastal areas. Aerosol Sci. Technol. 38 (5), 513-524, http://dx.doi.org/10.1080/02786820490466738.
Uwagi
[1] Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
[2] Errata do artykułu “Aerosol physical properties in Spitsbergen's fjords: Hornsund and Kongsfjorden during AREX campaigns in 2014 and 2015” została zamieszczona w „Oceanologii”, Vol. 60, no. 2 (2018). https://doi.org/10.1016/j.oceano.2017.11.004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8224fbe7-5d02-4487-872f-296158f7a9f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.