PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Additive manufacturing methods, materials and medical applications - the review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the additive manufacturing (AM) is a production of physical objects by adding material layer-by-layer based on virtual geometry developed in the computer system. The main criteria for the division of additive manufacturing methods are the way to apply the layer and the type of construction material. In most projects, the choice of method is a compromise between costs and properties (e.g. physical, chemical or mechanical) of the manufactured object. Currently, AM methods have found application in many areas of life, including industrial design, automotive, aerospace, architecture, jewellery, medicine and veterinary medicine, bringing many innovative and revolutionary solutions. The purpose of this article is to review of the additive production methods and present the potential of medical application.
Rocznik
Strony
15--29
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Śniadeckich 2, 75-453 Koszalin, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Poland
  • Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Poland
Bibliografia
  • 1. ASTM 52900 (2002): Standard Terminology for Additive Manufacturing-General Principles - Part 1: Terminology. American Society for Testing of Materials.
  • 2. Bose S., Ke D., Sahasrabudhe, H., Bandyopadhyay A. (2018). Additive manufacturing of biomaterials. Progress in Material Science, Vol. 93, pp. 45-11.
  • 3. Bourell D., Kruth J.P., Leu M., Levy G., Rosen D., Beese A.M., Clare A. (2017). Materials for additive manufacturing. CIRP Annals - Manufacturing Technology, Vol. 66, pp. 659-681.
  • 4. Mostafaei A., Elliot A.M., Barnes J.E., Li F., Tan W., Cramer C.L., Nandwana P., Chmielus M. (2021), Binder jet 3D printing - Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, Vol. 119, 100707.
  • 5. Gipson I., Rosen D., Brent S. (2015). Binder Jetting. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (Gipson I., Rosen D., Brent S., Eds.). Springer, New York, USA, pp. 205-208.
  • 6. Cooke S., Ahmadi K., Willerth S., Herring R. (2020). Metal additive manufacturing: Technology, metallurgy and modelling. Journal of Manufacturing Processes, Vol. 57, pp. 978-1003.
  • 7. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B, Vol. 35, 101388.
  • 8. Singh A., Kapil S., Das M. (2020). A comprehensive review of the methods and mechanism for powder feedstock handing in direct energy deposition. Additive Manufacturing, Vol. 35, 101388.
  • 9. Thompson A.M., Bian L., Shamsaei N., Yadollahi A. (2015). An overview of Direct Laser Deposition for additive manufacturing. Part I: Transport phenomena, modeling and diagnostics. Additive Manufacturing, Vol. 8, pp. 36-62.
  • 10. Shamsaei N., Yadollahi A., Bian L., Thopson S.M. (2015). An overview of Direct Laser Deposition for additive manufacturing. Part II: Mechanical behaviour, process parameter optimization and control. Additive Manufacturing, Vol. 8, pp. 12-35.
  • 11. Gipson I., Rosen D., Brent S. (2015). Direct Energy Deposition Processes. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (Gipson I., Rosen D., Brent S., Eds.). Springer, New York, USA, pp. 245-268.
  • 12. Madrid A.P.M., Vrech S.M., Sanchez M.A. (2019). Advances in additive manufacturing for bone tissue engineering scaffolds. Material Science & Engineering C, Vol. 100, pp. 631-644.
  • 13. Daminabo S.C., Goel S., Grammatikos S.A., Nezhad H.Y., Thakur V.K. (2020). Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Materials Today Chemistry, Vol. 16, 100248.
  • 14. Gipson I., Rosen D., Brent S. (2015). Extrusion-Based Systems. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (Gipson I., Rosen D., Brent S., Eds.). Springer, New York, USA, pp. 147-173.
  • 15. Singh D.D., Mahander T., Reddy A.R. (2021). Powder bed fusion processes: A brief review. Materials Today: Proceedings, Vol. 46, pp. 350-355.
  • 16. Aimar A., Palermo G., Innocenti B. (2019). The Role of 3D Printing on Medical Applications: A State of the Art. Journal of Healthcare Engineering, Vol. 10.
  • 17. Javaid M., Haleem A. (2018). Additive manufacturing applications in medical cases: A literature-based review. Alexandria Journal of Medicine, Vol. 54, pp. 411-422.
  • 18. Ahangar P., Cooke M.E., Weber M.H., Rosenzweig D. (2019). Current Biomedical Applications of 3D Printing and Additive Manufacturing. Applied Science, Vol. 9, 1713.
  • 19. Harris R., Savalani M. (2005). Medical Applications. In Rapid Manufacturing: An Industrial Revolution for Digital Age (Hopkinson N., Hague R. Dicens, P., Eds.). Jon Wiley & Sons, Hoboken, USA.
  • 20. Tuomi J., Palohemio K.-S., Vehvilainen J., Bjorkstrand R., Salmi M., Houtilainen E., Kontio R., Rouse S., Gibson I., Makitie A.A. (2014). A Novel Classification and Online Platform for Planning and Documentation of Medical Applications of Additive Manufacturing. Surgical Innovation, Vol. 21, pp. 553-559.
  • 21. Piekoś J., Dominiak K., Siemiński, P. (2016). The application of free versions of programs to printing models of bones. Mechanik, Vol. 4, pp. 320-321.
  • 22. Popov V.V., Muller-Kamskii G., Kovalevsky A., Dzhenzhera G., Strokin E., Kolomiets A., Ramon J. (2018). Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomedical Engineering Letters, Vol. 8, pp. 337-344.
  • 23. Ganguli A., Pagan-Diaz G.J., Grant L., Cvetkovic C., Bramlet M., Vozenilek J., Kesavadas T., Bashir R. (2018). 3D printing for preoperative planning and surgical training: a review. Biomedical Microdevices, Vol. 20, 65.
  • 24. Tong Y., Kaplan D.J., Spivak J.M., Bendo J.A. (2020). Three-dimensional printing in spine surgery: a review of current applications. The Spine Journal, Vol. 20, pp. 833-846.
  • 25. Bruns J., Habermann C.R., Ruther W., Delling D. (2010). The use of CT derived solid modelling of the pelvis in planning cancer resection. European Journal of Surgical Oncology, Vol. 36, pp. 594-598.
  • 26. Jiang, N., Hsu Y., Khadka A., Hu J., Wang D., Wang Q., Li J. (2012). Total or partial inferior border ostectomy for mandibular: Indications and outcomes. Journal of Cranio-Maxillofacial Surgery, Vol. 40, pp. 277-284.
  • 27. Feber J., Berto P.M., Quaresma M. (2006). Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction. American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 129, pp. 583-589.
  • 28. Mishra A., Verma T., Vaish A.,; Vaish R., Vaishya R., Maini L. (2019). Virtual preoperative planning and 3D printing are valuable for the management of complex orthopaedic trauma. Chinese Journal of Traumatology, Vol. 22, pp. 350-355.
  • 29. Culmore C., Smit G., Breedveld P. (2019). Additive manufacturing of medical instruments: A state-of-art review. Additive Manufacturing, Vol. 27, pp. 461-473.
  • 30. Paramasivam V., Sindhu Singh G., Santhanakrishnan S. (2020). 3D Printing of Human Anatomical Models for Preoperative Surgical Planning. Procedia Manufacturing, Vol. 48, pp. 684-690.
  • 31. Bittner S.M., Guo J.L., Melchiorri A., Mikos A.G. (2018). Three-dimensional printing of multilayer tissue engineering scaffolds. Materials Today, Vol. 21, pp. 861-874.
  • 32. Turnbull G., Clarke J., Picard F., Zhang W., Riches P., Li B., Shu W. (2020). 3D biofabrication for soft tissue a cartilage engineering. Medical Engineering and Physics, Vol. 82, pp. 13-39.
  • 33. Zafar M.J., Zhu D., Zhang Z. (2019). 3D Printing of Bioceramics for Bone Tissue Engineering. Materials, Vol. 12, 3361.
  • 34. Liu F-H., Lee R-T., Lin W-H., Liao Y-S. (2013). Selective laser sintering of bio-metal scaffolds. Procedia CIRP, Vol. 5, pp. 83-87.
  • 35. Putri N.R., Wang X., Chen Y., Li X., Kawazoe N. (2020). Preparation of PLGA-collagen hybrid scaffolds with controlled pore structures for cartilage tissue engineering. Progress in Natural Science: Materials International, Vol. 5, pp. 642-650.
  • 36. Sherwood J.K., Riley S.L., Palazzolo R., Brown S.C, Monkhouse C., Coates M., Griffith L.G., Landeen L.K., Ratcliffe A. (2002). A tree-dimensional osteochondral composite scaffold for articular cartage repair. Biomaterials, Vol. 23, pp. 4739-4751.
  • 37. Camarero-Espinosa S., Tomasina C., Calore A., Moroni L. (2020). Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffold with contraindicative properties for cartilage tissue engineering. Materials Today Bio, Vol. 6, 100051.
  • 38. Park C.H., Rios H.F., Jin, Q., Bland M.E., Flanagan C.L., Hollister S.J., Giannobile W.V. (2010). Biomimetic hybrid scaffold for engineering human tooth-ligament interfaces. Biomaterials, Vol. 31, pp. 5945-5952.
  • 39. Cui X., Boland T. (2009). Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, Vol. 31, pp. 6221-6227.
  • 40. Lowther M., Louth S., Davey A., Hussain A., Ginestra P., Carter L., Einstein N., Grover L., Cox S. (2019). Clinical, industrial, and research perspective on powder bed fusion additively manufactured metal implants. Additive Manufacturing, Vol. 26, pp. 565-584.
  • 41. Harun W.S.W., Kamariah M.S.I.N., Muhamad N., Ghani S.A.C., Ahamd F., Mohamed Z. (2018). A review of powder additive manufacturing process for metallic biomaterials. Powder Technology, Vol. 327, pp. 128-151.
  • 42. Sing S.L., An J., Yeong W.Y., Wiria F.E. (2016). Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Design. Journal of Orthopedic Research, Vol. 34, pp. 369-385.
  • 43. Burton H.E., Einstein N.M., Lawless B.M., Jamshidi P., Segarra M.A., Addison O., Shepherd D.E.T., Attallah M.M., Grover L.M., Cox S.C. (2019). The design of additively manufactured lattices to increase the functionality of medical implants. Material Science & Engineering C, Vol. 94, pp. 901-908.
  • 44. Zamborsky R., Kilian M., Jacko P., Bernadic M., Hudak R. (2019). Perspectives of 3D printing technology in orthopaedic surgery. Bratislava Medical Journal, Vol. 120, pp. 498-504.
  • 45. Javaid M., Haleem A. (2019). Current status and applications of additive manufacturing in dentistry: A literature-based review. Journal of Oral Biology and Craniofacial Research, Vol. 9, pp. 179-185.
  • 46. Revilla-Leon M., Sadeghpour M., Ozcan M. (2020). A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry. Journal of Prosthodontics, Vol. 9, pp. 179-185.
  • 47. Oliviera T.T., Reis A.C. (2019). Fabrication of dental implants by the additive manufacturing method: A systematic review. The Journal of Prosthetic Dentistry, Vol. 122, pp. 270-274.
  • 48. Kunrath M.F. (2020). Customized dental implants: Manufacturing processes, topography, osteointegration and future perspectives of 3D fabricated implants. Bioprinting, Vol. 20, e00107.
  • 49. Galante R., Figueiredo-Pina C.G., Serro A.P. (2019). Additive manufacturing of ceramics for dental applications: A review. Dental materials, Vol. 35, pp. 825-846.
  • 50. Mangano C., Bianchi A., Mangano F.G., Dana J., Colombo M., Solop I., Admakin O. (2020). Custom-made 3D printed subperiosteal titanium implants for the prosthetic restoration of the atrophic posterior mandible of elderly patients: a case series. 3D Printing in Medicine, Vol. 6, 1.
  • 51. Figliuzzi M., Mnagano F., Mangano C. (2012). A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting. Oral and Maxillofacial Surgery, Vol. 41, pp. 858-862.
  • 52. Zhang Y., Zhang L., Sun R., Jia Y., Chen X., Liu Y., Oyang H., Feng L. (2018). A new 3D printed titanium metal trabecular bone reconstruction system for early osteonecrosis of the femoral head. Medicine, Vol. 97, pp. e11088-e11096.
  • 53. Wang X., Xu H., Zhang J. (2019). Using personalized 3D printed Titanium sleeve-prosthetic composite for the reconstruction of severe segmental bone loss of proximal femur in revision total hip arthroplasty. Medicine, Vol. 99, pp. e18784-e18789.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-822378e2-ded7-44a0-bd86-18aab6874cb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.