PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Recurrent neural networks for dynamic reliability analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A dynamic approach to the reliability analysis of realistic systems is likely to increase the computational burden, due to the need of integrating the dynamics with the system stochastic evolution. Hence, fast-running models of process evolution are sought. In this respect, empirical modelling is becoming a popular approach to system dynamics simulation since it allows identifying the underlying dynamic model by fitting system operational data through a procedure often referred to as ‘learning’. In this paper, a Locally Recurrent Neural Network (LRNN) trained according to a Recursive Back-Propagation (RBP) algorithm is investigated as an efficient tool for fast dynamic simulation. An application is performed with respect to the simulation of the non-linear dynamics of a nuclear reactor, as described by a simplified model of literature.
Rocznik
Tom
Strony
45--53
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Nuclear Engineering, Polytechnic of Milan, Milan, Italy
autor
  • Department of Nuclear Engineering, Polytechnic of Milan, Milan, Italy
autor
  • Department of Nuclear Engineering, Polytechnic of Milan, Milan, Italy
Bibliografia
  • [1] Aldemir, T., Siu, N., Mosleh, A., Cacciabue, P.C. & Goktepe, B.G. (1994). Eds.: Reliability and Safety Assessment of Dynamic Process System NATO-ASI Series F, Vol. 120 Springer-Verlag, Berlin.
  • [2] Aldemir, T., Torri, G., Marseguerra, M., Zio, E. & Borkowski, J. A. (2003). Using point reactor models and genetic algorithms for on-line global xenon estimation in nuclear reactors. Nuclear Technology, 143, No. 3, 247-255.
  • [3] Back, A. D. & Tsoi, A. C. (1993). A simplified gradient algorithm for IIR synapse multi-layer perceptron. Neural Comput. 5: 456-462.
  • [4] Back, A. D. et al. (1994). A Unifying View of Some Training Algorithms for Multilayer Perceptrons with FIR Filter Synapses. Proc. IEEE Workshop Neural Netw. Signal Process.: 146.
  • [5] Boroushaki, M. et al. (2003). Identification and control of a nuclear reactor core (VVER) using recurrent neural networks and fuzzy system. IEEE Trans. Nucl. Sci. 50(1): 159-174.
  • [6] Campolucci, P. et al. (1999). On-Line Learning Algorithms of Locally Recurrent Neural Networks. IEEE Trans. Neural Networks 10: 253-271.
  • [7] Carlos, S., Ginestar, D., Martorell, S. & Serradell, V. (2003). Parameter estimation in thermalhydraulic models using the multidirectional search method. Annals of Nuclear Energy 30, 133-158.
  • [8] Chernick, J. (1960). The dynamics of a xenon-controlled reactor. Nuclear Science and Engineering 8: 233-243.
  • [9] Cojazzi, G., Izquierdo, J.M., Melendez, E. & Sanchez-Perea, M. (1992). The Reliability and Safety Assessment of Protection Systems by the Use of Dynamic Event Trees (DET). The DYLAM-TRETA package. Proc. XVIII annaul meeting Spanish Nuclear Society.
  • [10] Devooght, J. & Smidts, C. (1992). Probabilistic Reactor Dynamics I. The Theory of Continuous Event Trees, Nucl. Sci. and Eng. 111, 3, pp. 229-240.
  • [11] Haykin, S. (1994). Neural networks: a comprehensive foundation. New York: IEEE Press.
  • [12] Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8): 1735-1780.
  • [13] Izquierdo, J.M., Hortal, J., Sanchez-Perea, M. & Melendez, E (1994). Automatic Generation of dynamic Event Trees: A Tool for Integrated Safety Assessment (ISA), Reliability and Safety Assessment of Dynamic Process System NATO-ASI Series F, Vol. 120 Springer-Verlag, Berlin.
  • [14] Labeau, P. E. & Zio, E. (1998). The Cell-to-Boundary Method in the Frame of Memorization-Based Monte Carlo Algorithms. A New Computational Improvement in Dynamic Reliability, Mathematics and Computers in Simulation, Vol. 47, No. 2-5, 329-347.
  • [15] Labeau, P.E. (1996). Probabilistic Dynamics: Estimation of Generalized Unreliability Trhough Efficient Monte Carlo Simulation, Annals of Nuclear Energy, Vol. 23, No. 17, 1355-1369.
  • [16] Marseguerra, M. & Zio, E. (1996). Monte Carlo approach to PSA for dynamic process systems, Reliab. Eng. & System Safety, vol. 52, 227-241.
  • [17] Narendra, K. S. & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1: 4-27.
  • [18] Pearlmutter, B. (1995). Gradient Calculations for Dynamic Recurrent Neural networks: a Survey. IEEE Trans. Neural Networks 6: 1212.
  • [19] Siegelmann, H. & Sontag, E. (1995). On the Computational Power of Neural Nets. J. Computers and Syst. Sci. 50 (1): 132.
  • [20] Siu, N. (1994). Risk Assessment for Dynamic Systems: An Overview, Reliab. Eng. & System Safety, vol. 43, 43-74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-821fa1ef-dd43-45f6-bdb1-55ac448fd399
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.