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1. Introduction 

Dynamic reliability aims at broadening the classical 

event tree/ fault tree methodology so as to account for 

the mutual interactions between the hardware 

components of a plant and the physical evolution of 

its process variables. The dynamical aspects concern 

the ordering and timing of events in the accident 

propagation, the dependence of transition rates and 

failure criteria on the process variable values, the 

human operator and control actions. Obviously, a 

dynamic approach to reliability analysis would not 

bear any significant added value to the analysis of 

systems undergoing slow accidental transients for 

which the control variables do not vary in such a way 

to affect the component transition rates and/or to 

demand the intervention of the control. 

Dynamic reliability methods are based on a powerful 

mathematical framework capable of integrating the 

interactions between the components and the 

environment in which they function. These methods 

perform a more realistic modelling of the system and 

hence improve the quality and accuracy of risk 

assessment studies. A formal approach to 

incorporating the dynamic behaviour of systems in 

risk analysis was formulated under the name 

Probabilistic Dynamics [10]. Several methods for 

tackling the solution to the dynamic reliability 

problem have been formulated over the past ten years 

[1], [9], [13], [15], [16], [20]. Among these, Monte 

Carlo methods have demonstrated to be particularly 

efficient in taking up the numerical burden of such 

analysis, while allowing for flexibility in the 

assumptions and for a thorough uncertainty and 

sensitivity analysis [14], [16]. 

For realistic systems, a dynamic approach to 

reliability analysis is likely to require a significant 

increase in the computational efforts, due to the need 

of integrating the dynamic evolution, with its 

characteristic times, with the system stochastic 

evolution characterized by very different time 

constants. The fast increase in computing power has 

rendered, and will continue to render, more and more 

feasible the incorporation of dynamics in the safety 

and reliability models of complex engineering 

systems. In particular, as mentioned above, the Monte 

Carlo simulation framework offers a natural 

environment for estimating the reliability of systems 
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with dynamic features. However, the high reliability 

of systems and components favours the adoption of 

forced transition schemes and leads, correspondingly, 

to an increment of the integration of physical models 

in each trial. Thus, the time-description of the 

dynamic processes may render the Monte Carlo 

simulation quite burdensome and it becomes 

mandatory to resort to fast-running models of process 

evolution. In these cases, one may resort to either 

simplified, reduced analytical models, such as those 

based on lumped effective parameters [2], [7], [8], or 

empirical models. In both cases, the model parameters 

have to be estimated so as to best fit to the available 

plant data. 

In the field of empirical modelling, considerable 

interest is devoted to Artificial Neural Networks 

(ANNs) because of their capability of modelling non-

linear dynamics and of automatically calibrating their 

parameters from representative input/output data [16]. 

Whereas feedforward neural networks can model 

static input/output mappings but do not have the 

capability of reproducing the behaviour of dynamic 

systems, dynamic Recurrent Neural Networks (RNNs) 

are recently attracting significant attention, because of 

their potentials in temporal processing. Indeed, 

recurrent neural networks have been proven to 

constitute universal approximates of non-linear 

dynamic systems [19]. 

Two main methods exist for providing a neural 

network with dynamic behaviour: the insertion of a 

buffer somewhere in the network to provide an 

explicit memory of the past inputs, or the 

implementation of feedbacks. 

As for the first method, it builds on the structure of 

feedforward networks where all input signals flow in 

one direction, from input to output. Then, because a 

feedforward network does not have a dynamic 

memory, tapped-delay-lines (temporal buffers) of the 

inputs are used. The buffer can be applied at the 

network inputs only, keeping the network internally 

static as in the buffered multilayer perceptron (MLP) 

[11], or at the input of each neuron as in the MLP with 

Finite Impulse Response (FIR) filter synapses (FIR-

MLP) [4]. The main disadvantage of the buffer 

approach is the limited past-history horizon, which 

needs to be used in order to keep the size of the 

network computationally manageable, thereby 

preventing modelling of arbitrary long time 

dependencies between inputs and outputs [12]. It is 

also difficult to set the length of the buffer given a 

certain application. 

Regarding the second method, the most general 

example of implementation of feedbacks in a neural 

network is the fully recurrent neural network 

constituted by a single layer of neurons fully 

interconnected with each other or by several such 

layers [18]. Because of the required large structural 

complexity of this network, in recent years growing 

efforts have been propounded in developing methods 

for implementing temporal dynamic feedback 

connections into the widely used multi-layered 

feedforward neural networks. Recurrent connections 

can be added by using two main types of recurrence or 

feedback: external or internal. External recurrence is 

obtained for example by feeding back the outputs to 

the input of the network as in NARX networks [5], 

[17]; internal recurrence is obtained by feeding back 

the outputs of neurons of a given layer in inputs to 

neurons of the same layer, giving rise to the so called 

Locally Recurrent Neural Networks (LRNNs) [6]. 

The major advantages of LRNNs with respect to the 

buffered, tapped-delayed feedforward networks and to 

the fully recurrent networks are [6]: 1) the hierarchic 

multilayer topology which they are based on is well 

known and efficient; 2) the use of dynamic neurons 

allows to limit the number of neurons required for 

modelling a given dynamic system, contrary to the 

tapped-delayed networks; 3) the training procedures 

for properly adjusting the network weights are 

significantly simpler and faster than those for the fully 

recurrent networks. 

In this paper, an Infinite Impulse Response-Locally 

Recurrent Neural Network (IIR-LRNN) is adopted 

together with the Recursive Back-Propagation (RBP) 

algorithm for its batch training [6]. In the IIR-LRNN 

the synapses are implemented as Infinite Impulse 

Response digital filters, which provide the network 

with system state memory. 

The proposed neural approach is applied to a highly 

non-linear dynamic system of literature, the 

continuous time Chernick model of a simplified 

nuclear reactor [8]: the IIR-LRNN is devised to 

estimate the neutron flux temporal evolution only 

knowing the reactivity forcing function. The IIR-

LRNN ability of dealing with both the short-term 

dynamics governed by the instantaneous variations of 

the reactivity and the long-term dynamics governed 

by Xe oscillations is verified by extensive simulations 

on training, validation and test transients. 

The paper is organized as follows: in Section 2, the 

IIR-LRNN architecture is presented in detail together 

with the RBP training algorithm; in Section 3, the 

adopted neural approach is applied to simulate the 

reactor neutron flux dynamics. Finally, some 

conclusions are proposed in the last Section. 

 

2. Locally Recurrent Neural Networks 

 

2.1. The IIR-LRNN architecture and forward 

calculation 
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A LRNN is a time-discrete network consisting of a 

global feed-forward structure of nodes interconnected 

by synapses which link the nodes of the k-th layer to 

those of the successive (k + 1)-th layer, k = 0, 1, …, 

M, layer 0 being the input and M the output. 

Differently from the classical static feed-forward 

networks, in an LRNN each synapse carries taps and 

feedback connections. In particular, each synapse of 

an IIR-LRNN contains an IIR linear filter whose 

characteristic transfer function can be expressed as 

ratio of two polynomials with poles and zeros 

representing the AR and MA part of the model, 

respectively. 

For simplicity of illustration, and with no loss of 

generality, we start by considering a network 

constituted by only one hidden layer, i.e. M = 2, like 

the one in Figure 1. At the generic time t, the input to 

the LRNN consists of a pattern x(t)   
0N , whose 

components feed the nodes of the input layer 0 which 

simply transmit in output the input received, i.e. x
0

m(t) 

= xm(t), m = 1, 2, …, N
0
. A bias node is also typically 

inserted, with the index m = 0, such that x
0
0(t) = 1 for 

all values of t. The output variable of the m-th input 

node at time t is tapped a number of delays L
1

nm - 1 

(except for the bias node output which is not tapped, 

i.e. L
1

n0 – 1 = 0) so that from each input node m   0 

actually L
1

nm values, x
0

m(t), x
0
m(t - 1), x

0
m(t - 2), …, 

x
0

m(t – L
1
nm + 1) are processed forward through the 

synapses connecting input node m to the generic 

hidden node n = 1, 2, … N
1
. The L

1
nm values sent from 

the input node m to the hidden node n are first 

multiplied by the respective synaptic weights w
1
nm(p), p 

= 0, 1, …, L
1
nm - 1 being the index of the tap delay 

(the synaptic weight w
1

n0(p) connecting the bias input 

node m = 0 is the bias value itself) and then processed 

by a summation operator to give the MA part of the 

model with transfer function  
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B being the usual delay operator of unitary step. The 

finite set of weights w
1

nm(p) which appear in the MA 

model form the so called impulse response function 

and represent the components of the MA part of the 

synaptic filter connecting input node m to hidden node 

n. The weighed sum thereby obtained, y
1
nm, is fed 

back, for a given number of delays I
1
nm (I

1
n0 = 0 for 

the bias node) and weighed by the coefficient v
1
nm(p) 

(the AR part of the synaptic filter connecting input 

node m to hidden node n, with the set of weights 

v
1

nm(p) being the so-called AR filter’s impulse response 

function), to the summation operator itself to give the 

output quantity of the synapse ARMA model: 

 

   








11

1

11

)(

1

0

01

)(

1 )()()(
nmnm I

p

nmpnm

L

p

npnmnm
ptyvptxwty .   (2) 

This value represents the output at time t of the IIR-

filter relative to the nm-synapse, which connects the 

m-th input neuron to the n-th hidden neuron. The first 

sum in (2) is the MA part of the synaptic filter and the 

second is the AR part. As mentioned above, the index 

m = 0 usually represents the bias input node, such that 

x
0

0(t) is equal to one for all values of t, L
1
n0 – 1 = I

1
n0 = 

0 and thus, y
1
n0(t) = w

1
n0(0). 

The quantities y
1

nm(t), m = 0, 1, …, N
0
, are summed to 

obtain the net input s
1

n(t) to the non-linear activation 

function f
1
(·), typically a sigmoid, Fermi function, of 

the n-th hidden node, n = 1, 2, …N
1
: 
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The output of the activation function gives the state of 

the n-th hidden neuron, x
1
n(t): 
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The output values of the nodes of the hidden layer 1, 

x
1

n(t), n = 1, 2, …, N
1
, are then processed forward 

along the AR and MA synaptic connections linking 

the hidden and output nodes, in a manner which is 

absolutely analogous to the processing between the 

input and hidden layers. A bias node with index n = 0 

is also typically inserted in the hidden layer, such that 

x
1

0(t) = 1 for all values of t. 

The output variable of the n-th hidden node at time t is 

tapped a number of delays L
M

rn – 1 ( = 0 for the bias 

node n = 0) so that from each hidden node n actually 

L
M

rn values, x
1
n(t), x

1
n(t – 1), x

1
n(t – 2), …, x

1
n(t - L

M
rn 

+ 1), are processed forward through the MA-synapses 

connecting the hidden node n to the output node r = 1, 

2, …, N
M

. The L
M

rn values sent from the hidden node n 

to the output node r are first multiplied by the 

respective synaptic weights w
M

rn(p), p = 0, 1, …, L
M

rn – 

1 being the index of the tap delay (the synaptic weight 

w
M

r0 connecting the bias hidden node n = 0 is the bias 

value itself) and then processed by a summation 

operator to give the MA part of the model with 

transfer function 
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The sum of these values, y
M

rn, is fed back, for a 

given number of delays I
M

rn (I
M

r0 = 0 for the bias 

node) and weighed by the coefficient v
M

rn(p) (the 

AR part of the synaptic filter connecting hidden 

node n to output node r, with the set of weights 
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v
M

rn(p) being the corresponding impulse response 

function), to the summation operator itself to give 

the output quantity of the synapse ARMA model: 
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As mentioned before, the index n = 0 represents the 

bias hidden node, such that x
1
0(t) is equal to one for all 

values of t, L
M

r0 – 1 = I
M

r0 = 0 and thus, y
M

r0(t) = 

w
M

r0(0). 

The quantities y
M

rn(t), n = 0, 1, …, N
1
, are summed to 

obtain the net input s
M

r(t) to the non-linear activation 

function f
M

(·), also typically a sigmoid, Fermi 

function, of the r-th output node r = 1, 2, …, N
M

: 
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The output of the activation function gives the state of 

the r-th output neuron, x
M

r(t): 
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The extension of the above calculations to the case of 

multiple hidden layers (M > 2) is straightforward. The 

time evolution of the generic neuron j  belonging to 

the generic layer k = 1, 2, …, M is described by the 

following equations: 
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Note that if all the synapses contain only the MA part 

(i.e., I
k
jl = 0 for all j, k, l), the architecture reduces to a 

FIR-MLP and if all the synaptic filters contain no 

memory (i.e., L
k
jl – 1 = 0 and I

k
jl = 0 for all j, k, l), the 

classical multilayered feed-forward static neural 

network is obtained. 

 

2.2. The Recursive Back-Propagation (RBP) 

algorithm for batch training 

The Recursive Back-Propagation (RBP) training 

algorithm    [6] is a gradient - based minimization 

algorithm which makes use of a particular chain rule 

expansion rule expansion for the computation of the 

necessary derivatives. A thorough description of the 

RBP training algorithm is given in the Appendix at 

the end of the paper. 
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Figure 1. Scheme of an IIR-LRNN with one hidden 

layer 

 

3. Simulating reactor neutron flux dynamics  

by LRNN 

In general, the training of an ANN to simulate the 

behaviour of a dynamic system can be quite a difficult 

task, mainly due to the fact that the values of the 

system output vector y(t) at time t depend on both the 

forcing functions vector x(·) and the output y(·) itself, 

at previous steps: 

 

   )...,),1(...,),1(),(()( Θyxxy  tttFt ,            (12) 

 

where Θ is a set of adjustable parameters and F(·) the 

non-linear mapping function describing the system 

dynamics. 

In this Section, a locally recurrent neural network is 

trained to simulate the dynamic evolution of the 

neutron flux in a nuclear reactor. 

 

3.1. Problem formulation 

The reference dynamics is described by a simple 

model based on a one group, point kinetics equation 

with non-linear power reactivity feedback, combined 

with Xenon and Iodine balance equations [8]: 
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where Ф, Xe and I are the values of flux, Xenon and 

Iodine concentrations, respectively. 

The reactor evolution is assumed to start from an 

equilibrium state at a nominal flux level Φ0= 4.66·10
12

 

n/cm
2
s. The initial reactivity needed to keep the steady 

state is ρ0 = 0.071 and the Xenon and Iodine 

concentrations are Xe0 = 5.73·10
15

 nuclei/cm
3
 and I0 = 

5.81·10
15

 nuclei/cm
3
, respectively. In the following, 

the values of flux, Xenon and Iodine concentrations 

are normalized with respect to these steady state 

values. 

The objective is to design and train a LRNN to 

reproduce the neutron flux dynamics described by the 

system of differential equations (13), i.e. to estimate 

the evolution of the normalized neutron flux Φ(t), 

knowing the forcing function ρ(t). 

Notice that the estimation is based only on the current 

values of reactivity. These are fed in input to the 

locally recurrent model at each time step t: thanks to 

the MA and AR parts of the synaptic filters, an 

estimate of the neutron flux Φ(t) at time t is produced 

which recurrently accounts for past values of both the 

network’s inputs and the estimated outputs, viz. 

 

   )...,),1(ˆ...,),1(),(()(ˆ Θ tttFt             (14) 

 
where Ө is the set of adjustable parameters of the 

network model, i.e. the synaptic weights. 

On the contrary, the other non-measurable system 

state variables, Xe(t) and I(t), are not fed in input to 

the LRNN: the associated information remains 

distributed in the hidden layers and connections. This 

renders the LRNN modelling task quite difficult. 

 

3.2. Design and training of the LRNN 

The LRNN used in this work is characterized by three 

layers: the input, with two nodes (bias included); the 

hidden, with six nodes (bias included); the output with 

one node. A sigmoid activation function has been 

adopted for the hidden and output nodes. 

The training set has been constructed with Nt = 250 

transients, each one lasting T = 2000 minutes and 

sampled with a time step Δt of 40 minutes, thus 

generating np = 50 patterns. Notice that a temporal 

length of 2000 minutes allows the development of the 

long-term dynamics, which are affected by the long-

term Xe oscillations. All data have been normalized in 

the range [0.2, 0.8]. 

Each transient has been created varying the reactivity 

from its steady state value according to the following 

step function: 
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where Ts is a random steady-state time interval and Δρ 

is random reactivity variation amplitude. In order to 

build the 250 different transients for the training, these 

two parameters have been randomly chosen within the 

ranges [0, 2000] minutes and [-5·10
-4

, +5·10
-4

], 

respectively. 

The training procedure has been carried out on the 

available data for nepoch = 200 learning epochs 

(iterations). During each epoch, every transient is 

repeatedly presented to the LRNN for nrep = 10 

consecutive times. The weight updates are performed 

in batch at the end of each training sequence of length 

T. No momentum term nor an adaptive learning rate 

[6] turned out necessary for increasing the efficiency 

of the training, in this case. 

Ten training runs have been carried out to set the 

number of delays (orders of the MA and AR parts of 

the synaptic filters) so as to obtain a satisfactory 

performance of the LRNN, measured in terms of a 

small root mean square error (RMSE) on the training 

set. 

As a result of these training runs, the MA and AR 

orders of the IIR synaptic filters have been set to 12 

and 10, respectively, for both the hidden and the 

output neurons. 

 

3.3. Results 

The trained LRNN is first verified with respect to its 

capability of reproducing the transients employed for 

the training itself. This capability is a minimum 

requirement, which however does not guarantee the 

proper general functioning of the LRNN when new 

transients, different from those of training, are fed into 

the network. The evolution of the flux, normalized 

with respect to the steady state value Φ0, 

corresponding to one sample training transients is 

shown in Figure 2: as expected, the LRNN estimate of 

the output (crosses) is in satisfactory agreement with 

the actual transient (circles). 

Notice the ability of the LRNN of dealing with both 

the short-term dynamics governed by the 

instantaneous   variations of   the    forcing    function 

(i.e., the reactivity step) and the long-term dynamics 

governed by Xe oscillations. 
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Figure 2. Comparison of the model-simulated 

normalized flux (circles) with the LRNN-estimated 

one (crosses), for two sample transients of the training 

set 

 

3.3.1. Validation phase: training like dynamics 

The procedure for validating the generalization 

capability of the LRNN to transients different from 

those of training is based on Nt = 80 transients of T = 

2000 minutes each, initiated again by step variations 

in the forcing function ρ(t) as in eq. (15), with timing 

and amplitude randomly sampled in the same ranges 

as in the training phase. 

The results reported in Figure 3 confirm the success 

of the training since the LRNN estimation errors are 

still small for these new transients. Furthermore, the 

computing time is about 5000 times lower than that 

required by the numerical solution of the model. This 

makes the LRNN model very attractive for real time 

applications, e.g. for control or diagnostic purposes, 

and for applications for which repeated evaluations 

are required, e.g. for uncertainty and sensitivity 

analyses. 

 

3.3.2. Test phase 

The generalization capabilities of the trained and 

validated LRNN have been then tested on a new set of 

transients generated by forcing functions variations 

quite different from those used in both the training 

and the validation phases. The test set consists of three  

transients batches created by three functional shapes 

of the forcing function ρ(t) never seen by the LRNN: 
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Figure 3. Comparison of the model-simulated 

normalized flux (circles) with the LRNN-estimated 

one (crosses), for one sample transient of the 

validation set 

 

 A ramp function: 

 



















vs

vsssvv

s

TTt

TTtTTTtT

Tt

t

,

)16(,)/()/(

,

)(

0

0

0









 

where the steady-state time interval Ts (0 ≤ Ts ≤ 

2000 min), the ramp variation time interval Tv (0 ≤ 

Tv ≤ 2000 min) and the reactivity variation 

amplitude Δρ (-5·10
-4

 ≤ Δρ ≤ +5·10
-4

) are 

randomly extracted in their ranges of variation in 

order to generate the different transients; 

 A sine function: 

 

)2sin()( ftt   ,                                       (17) 

 

where f is the oscillation frequency (1 ≤ f ≤ 2 min
-

1
) and Δρ (-5·10

-4
 ≤ Δρ ≤ +5·10

-4
) is the reactivity 

variation amplitude; 

 Random reactivity variation amplitude with a 

uniform probability density function between -

5·10
-4

 and +5·10
-4

. 

 

A total of Nt = 80 temporal sequences has been 

simulated for each batch, producing a total of 240 test 

transients. The temporal length and the sampling time 

steps of each transient are the same as those of the 

training and validation sets (2000 and 40 minutes, 

respectively). 

Figures 4, 5 and Figure 6 show a satisfactory 

agreement of the LRNN estimation with the model 

simulation, even for cases quite different from the 

dynamic evolution considered during training. 
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Figure 4. Comparison of the model-simulated 

normalized flux (circles) with the LRNN-estimated 

one (crosses), for one sample ramp transient of the test 

set 
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Figure 5. Comparison of the model-simulated 

normalized flux (circles) with the LRNN-estimated 

one (crosses), for one sample sinusoidal transient of 

the test set 
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Figure 6. Comparison of the model-simulated 

normalized flux (circles) with the LRNN-estimated 

one (crosses), for one sample random transient of the 

test set 

These results are synthesized in Table 1, in terms of 

the following performance indices: root mean square 

error (RMSE) and mean absolute error (MAE). 

 

Table 1. Values of the performance indices (RMSE 

and MAE) calculated over the training, validation and 

test sets for the LRNN applied to the reactor neutron 

flux estimation 

 ERRORS 

Set 
Forcing 

function 

n. of 

sequences 
RMSE MAE 

Training Step 250 0.0037 0.0028 

Validation Step 80 0.0098 0.0060 

Test 

Ramp 80 0.0049 0.0039 

Sine 80 0.0058 0.0051 

Random 80 0.0063 0.0054 

 

4. Conclusion 

Dynamic reliability analyses entail the rapid 

simulation of the system dynamics under the different 

scenarios and configurations, which occur during the 

system stochastic life evolution. However, the 

complexity and nonlinearities of the involved 

processes are such that analytical modelling becomes 

burdensome, if at all feasible. 

In this paper, the framework of Locally Recurrent 

Neural Networks (LRNNs) for non-linear dynamic 

simulation has been presented in detail. The powerful 

dynamic modelling capabilities of this type of neural 

networks has been demonstrated on a case study 

concerning the evolution of the neutron flux in a 

nuclear reactor as described by a simple model of 

literature, based on a one group, point kinetics 

equation with non-linear power reactivity feedback, 

coupled with the Xenon and Iodine balance equations. 

An Infinite Impulse Response-Locally Recurrent 

Neural Network (IIR-LRNN) has been successfully 

designed and trained, with a Recursive Back-

Propagation (RBP) algorithm, to the difficult task of 

estimating the evolution of the neutron flux, only 

knowing the reactivity evolution, since the other non 

measurable system state variables, i.e. Xenon and 

Iodine concentrations, remain hidden. 

The findings of the research seem encouraging and 

confirmatory of the feasibility of using recurrent 

neural network models for the rapid and reliable 

system simulations needed in dynamic reliability 

analysis. 
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Appendix: the Recursive Back-Propagation 

(RBP) Algorithm for batch training 

Consider one training temporal sequence of length T 

and denote by dr(t), r = 1, 2, …, N
M

, the desired output 

value of the training sequence at time t. 

The instantaneous squared error at time t, e
2
(t), is 

defined as the sum over all N
M

 output nodes of the 

squared deviations of the network outputs x
M

r(t) from 

the corresponding desired value in the training 

temporal sequence, dr(t): 

 

    




MN

r

r
tete

1

22 )()( ,                                                (1’) 

 

where 

   )()()( txtdte M

rrr
 .                                            (2’) 

 
The training algorithm aims at minimizing the global 

squared error E
2
 over the whole training sequence of 

length T, 

 

   



T

t

teE
1

22 )( ,                                                       (3’) 

 
This is achieved by modifying iteratively the network 

weights w
k
jl(p), v

k
jl(p) along the gradient descent, viz. 
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where μ is the learning rate. 

Introducing the usual backpropagating error and delta 

quantities with respect to the output, x
k
j(t), and input, 

s
k
j(t), of the generic node j of layer k: 
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the chain rule for the modification (4’) of the MA and 

AR synaptic weights w
k
jl(p), v

k
jl(p) can be written as 
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Note that the weights updates (7’) are performed in 

batch at the end of the training sequence of length T. 

From (10), 
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so that from the differentiation of (11) one obtains 
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To compute δ

k
j(t) from (6’), we must be able to 

compute e
k
j(t). Applying the chain rule to (5’), one has 
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Under the hypothesis of synaptic filter temporal 

causality (according to which the state of a node at 

time t influences the network evolution only at 

successive times and not at previous ones), the 

summation along the time trajectory can start from τ = 

t. Exploiting the definitions (6’) and (8’), changing the 

variables as τ – p  t and considering that for the 

output layer, i.e. k = M, the derivative ∂E
2
/∂x

M
j(t) can 

be computed directly from (2’), the back-propagation 

of the error through the layers can be derived 
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where from (11) 
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