PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Maximum number of limit cycles for generalized Kukles differential system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We apply the averaging theory of first and second order to a class of generalized polynomial Kukles differential systems, which can bifurcate from the periodic orbits of the linear center ẋ = y, ẏ = −x, in order to study the maximum number of limit cycles of these systems.
Słowa kluczowe
Wydawca
Rocznik
Strony
59--75
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
  • Department of Mathematics, Laboratory LMA, University of Annaba, P. O. Box 12, Annaba 23000, Algeria
  • Department of Mathematics, Laboratory LMA, University of Annaba, P. O. Box 12, Annaba 23000, Algeria
Bibliografia
  • [1] S. Badi, E. Bendib and A. Makhlouf, On the maximum number of limit cycles for a generalization of polynomial Liénard differential systems via averaging theory, J. Pure Appl. Algebra 12 (2016), no. 4, 2971-2985.
  • [2] A. Boulfoul, A. Makhlouf and N. Mellahi, On the limit cycles for a class of generalized Kukles differential systems, J. Appl. Anal. Comput. 9 (2019), no. 3, 864-883.
  • [3] A. Buică and J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math. 128 (2004), no. 1, 7-22.
  • [4] Y. Cao and C. Liu, The estimate of the amplitude of limit cycles of symmetric Liénard systems, J. Differential Equations 262 (2017), no. 3, 2025-2038.
  • [5] J. Chavarriga, E. Sáez, I. Szántó and M. Grau, Coexistence of limit cycles and invariant algebraic curves for a Kukles system, Nonlinear Anal. 59 (2004), no. 5, 673-693.
  • [6] T. Chen and J. Llibre, Limit cycles of a second-order differential equation, Appl. Math. Lett. 88 (2019), 111-117.
  • [7] J. Giné, Conditions for the existence of a center for the Kukles homogeneous systems, Comput. Math. Appl. 43 (2002), no. 10-11, 1261-1269.
  • [8] J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with odd degree, Bull. Lond. Math. Soc. 47 (2015), no. 2, 315-324.
  • [9] J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with even degree, J. Appl. Anal. Comput. 7 (2017), no. 4, 1534-1548.
  • [10] D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900, Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 5 (1900), 253-297.
  • [11] F. Jiang, Z. Ji and Y. Wang, An upper bound for the amplitude of limit cycles of Liénard-type differential systems, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Paper No. 34.
  • [12] I. S. Koukless, Sur quelques cas de distinction entre un foyer et un centre, C. R. Dokl. Acad. Sci. URSS (N. S.) 42 (1944), 208-211.
  • [13] J. Llibre, C. A. Buzzi and P. R. d. Silva, 3-dimensional Hopf bifurcation via averaging theory, Discrete Contin. Dyn. Syst. 17 (2007), no. 3, 529-540.
  • [14] J. Llibre and A. C. Mereu, Limit cycles for generalized Kukles polynomial differential systems, Nonlinear Anal. 74 (2011), no. 4, 1261-1271.
  • [15] J. Llibre, A. C. Mereu and M. A. Teixeira, Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 2, 363-383.
  • [16] J. Llibre and C. Valls, Limit cycles for a variant of a generalized Riccati equation, Appl. Math. Lett. 68 (2017), 76-79.
  • [17] A. Makhlouf and A. Menaceur, On the limit cycles of a class of generalized Kukles polynomial differential systems via averaging theory, Int. J. Differ. Equ. 2015 (2015), Article ID 325102.
  • [18] N. Mellahi, A. Boulfoul and A. Makhlouf, Maximum number of limit cycles for generalized Kukles polynomial differentia systems, Differ. Equ. Dyn. Syst. 27 (2019), no. 4, 493-514.
  • [19] A. P. Sadovskiĭ, Cubic systems of nonlinear oscillations with seven limit cycles, Differ. Uravn. 39 (2003), no. 4, 472-481.
  • [20] J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci. 59, Springer, New York, 1985.
  • [21] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer, Berlin, 1990.
  • [22] L. Yang and X. Zeng, An upper bound for the amplitude of limit cycles in Liénard systems with symmetry, J. Differential Equations 258 (2015), 2701-2710.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-821d4440-57a2-4492-b929-78d58c9af3bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.