PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Random fuzzy Poisson processes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poisson processes, particularly the time-dependent extension, play important roles in reliability and risk analysis. It should be fully aware that the Poisson modeling in the current reliability engineering and risk analysis literature is merely an ideology under which the random uncertainty governs the phenomena. In other words, current Poisson Models generate meaningful results if randomness assumptions hold. However, the real world phenomena are often facing the co-existence reality and thus the probabilistic Poisson modeling practices may be very doubtful. In this paper, we define the random fuzzy Poisson process, explore the related average chance distributions, and propose a scheme for the parameter estimation and a simulation scheme as well. It is expecting that a foundational work can be established for Poisson random fuzzy reliability and risk analysis.
Rocznik
Tom
Strony
113--122
Opis fizyczny
Bibliogr. 14 poz., tab.
Twórcy
autor
  • University of Cape Town, Cape Town, South Africa
autor
  • University of Cape Town, Cape Town, South Africa
autor
  • South African National Biodiversity Institute, Cape Town, South Africa
Bibliografia
  • [1] Carvalho, H. & Machado, V. C. (2006). Fuzzy set theory to establish resilient production systems. Proc. of IIE Annual Conference and Exhibition.
  • [2] Crow, L. H. (1974). Reliability analysis for complex, repairable systems. Reliability and Biometry, Proschan, F. and Serfling, R. J. Eds. Philadelphia, Pennsylvania, SIAM.
  • [3] Grimmett, G. R. & Stirzaker, D. R. (1992). Probability and Random Processes. Second Edition. Clarendon Press, Oxford, London.
  • [4] Guo, R. & Love, C. E. (1992). Statistical Analysis of An Age Model for Imperfectly Repaired System. Quality and Reliability Engineering International, 8, 133-146.
  • [5] Guo, R. & Love, C. E. (1994). Simulating Nonhomogeneous Poisson Processes with Proportional Intensities. Naval Research Logistics, 41, 507-522.
  • [6] Guo, R., & Love, C. E. (2004). Fuzzy Covariate Modelling an Imperfectly Repaired System. Quality Assurance, 10 (37), 7-15.
  • [7] Guo, R., Zhao, R. Q., Guo, D. & Dunne, T. (2007). Random Fuzzy Variable Modeling on Repairable System. Journal of Uncertain Systems, Vol. 1, No.3, 222-234.
  • [8] Guo, R., & Guo, D. (2009). Statistical Simulating Fuzzy Variable. Proceedings of the Nineth International Conference on Information and Management Sciences, Kunming, China, 2009 (under-review).
  • [9] Love, C. E. & Guo, R. (1991). Using Proportional Hazard Modelling in Plant Maintenance. Quality and Reliability Engineering International, 7, 7-17.
  • [10] Love, C. E. & Guo, R. (1991). Application of Weibull Proportional Hazards Modelling to Bad-As-Old Failure Data. Quality and Reliability Engineering International, 7, 149-157.
  • [11] Liu, B. D. (2004). Uncertainty Theory: An Introduction to Its Axiomatic Foundations. Berlin: Springer-Verlag Heidelberg.
  • [12] Liu, B. D. (2007). Uncertainty Theory: An Introduction to Its Axiomatic Foundations. 2nd Edition; Berlin: Springer-Verlag Heidelberg.
  • [13] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
  • [14] Zadeh, L. A., (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3-28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-821c6a09-69c7-47cb-a143-e4ee2d8997d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.