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1. Introduction 

It should be fully aware that vagueness is an intrinsic 
feature in today’s diversified business environments, 
just as Carvalho and Machado [1] commented, “In a 
global market, companies must deal with a high rate 
of changes in business environment. … The 
parameters, variables and restrictions of the 
production system are inherently vagueness.” 
Therefore the co-existence of random uncertainty 
and fuzzy uncertainty is inevitable reality of safety 
and reliability analysis and modelling.  

It is a well-established fact that Poisson processes 
and particularly the non-stationary Poisson processes 
play important roles in safety and reliability 
modeling. Many researchers contributed to the 
probabilistic developments, see Crow [2], Guo and 
Love [4], [5], [6], Guo et al [7], Love and Guo, [9], 
[10] etc. Logically, it is obvious that probabilistic 
modeling is only a good approximation to real world 
problem when random uncertainty governs the 
phenomenon. If fuzziness and randomness both 
appear then probabilistic modeling may be 
questionable. Therefore, developing the appropriate 

models for modeling fuzziness and randomness co-
existence is necessary. 
In this paper, we are trying to offer a systematic 
treatment for the random fuzzy Poisson processes not 
only in the mathematical sense (building models 
based on postulates and definitions) but also in the 
statistical sense (estimation and hypothesis testing 
based on sample data).   
 
2. Foundation of random fuzzy variable 

Without a solid understanding of the intrinsic feature 
of random fuzzy variable, there is no base for 
exploring the modelling of random fuzzy processes. 
Therefore, it is necessary to briefly review Liu’s 
hybrid variable theory established on the axiomatic 
credibility measure and probability measure 
foundations. 
First let us review the credibilistic fuzzy variable 
theory. Let Θ  be a nonempty set, and ( )ΘP  the 

power set on Θ . Each element, let us 
say,A ⊂ Θ , ( )A∈ ΘP  is called an fuzzy event. A 

number denoted as { }Cr A , { }0 Cr 1A≤ ≤ , is assigned 
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to event ( )A∈ ΘP , which indicates the credibility 

grade with which event ( )A∈ ΘP  occurs. 

{ }Cr A satisfies following axioms given by Liu [11, 

12]: 
Axiom 1: { }Cr 1Θ = . 

Axiom 2: { }Cr ⋅ is non-decreasing, i.e., whenever 

A B⊂ , { } { }Cr CrA B≤ . 

Axiom 3: { }Cr ⋅  is self-dual, i.e., for any 

2A Θ∈ , { } { }Cr Cr 1cA A+ = .  

Axiom 4: { } { }Cr sup Cri i i
i

A A=   ∪  for any { }iA  with 

{ }Cr   0.5iA ≤ . 

Definition 1: (Liu [11, 12]) Any set function 
( ) [ ]Cr : 0,1Θ →P  satisfies Axioms 1-4 is called a 

credibility measure. The triple ( )( ), ,CrΘ ΘP  is 

called the credibility measure space. 
It should be fully aware that credibility measure only 
follows sub-σ -additive property, but probability 
measure does enjoy the σ -additive property. This 
character of credibility measure relaxes the 
assumptions of the set mapping so that it might cover 
a wider category of real world uncertain problems, 
but brings new difficulties in its mathematical 
treatments.  
Definition 2: A fuzzy variable ξ  is a measurable 

mapping, i.e., ( )( ) ( )( ): , ,ξ Θ Θ → R RP B . 

The measurable mapping is characterized by the 
membership of the pre-image of event ( ],B r= −∞  

under fuzzy variable ξ  to the power set ( )ΘP . In 

other words,  
 

  ( ) { } ( ), :B Bθ ξ∀ ∈ ∈ Θ ∈ ∈ ΘRB P  (1) 

 
The measurability of fuzzy variableξ  definitely 
induces a measure on the measurable 
space ( )( ),R RB . Let us denote the induced measure 

as cµ . For ( ) ,B∀ ∈ RB the induced measure is 

 

 { } { } ( ){ }Cr : Cr :c B B rµ θ ξ θ ξ ω= ∈Θ ∈ = ∈ Θ ≤  (2) 

 
Therefore, further denote Crcµ ξ −= �

1  and 
specifically, the distribution is defined by the 
induced measure 
 

  ( ) ( ]{ } ( ){ }, Cr :cx r rΛ = µ −∞ = θ ∈Θ ξ θ ≤  (3) 

 

The induced distribution by fuzzy variableξ  is just 
the credibility distribution which characterizes the 
measurement of vague (or fuzzy) uncertainty 
associated with every event with fuzzy variableξ .  
Definition 3: (Liu [11, 12]) The credibility 
distribution [ ]: 0,1Λ →R  of a fuzzy variable ξ  on 

( )( ), ,CrΘ ΘP  is 

   ( ) ( ){ }Crx xθ ξ θΛ = ∈ Θ ≤  (4) 

Credibility measure, as an axiomatic measure 
development, the set class, power set ( )ΘP plays the 

critical roles in defining set function credibility 
measure Cr as well as the measurability of fuzzy 
variable. However, it is necessary to keep in mind 
that power set ( )ΘP  is the largest σ -algebra of 

space Θ . The establishment of set function on power 
set inevitably brings different feature from that 
establishing probability measure on the smallest σ -
algebra ( )ΩA of a space Ω . Therefore, a fuzzy 

variable is not a fuzzy set in the sense of Zadeh’s 
fuzzy theory [13], [14], in which a fuzzy set is 
defined by a membership function. 
Liu [11], [12] defines a random fuzzy variable as a 
mapping from the credibility space ( ),2 ,CrΘΘ  to a set 

of random variables.  Again, we should be aware that 
a random fuzzy variable here takes real numbers as 
its values, which behaves very similar to a random 
variable. We would like to present an intuitive 
definition similar to that of stochastic process in 
probability theory and expect readers who are 
familiar with the basic concept of stochastic 
processes can understand the comparative definition.  
Definition 4: A random fuzzy variable, denoted as 

( ){ },Xβ θξ = θ∈Θ  , is a collection of random 

variables Xβ  defined on the common probability 

space ( ), PrΩ A,  and indexed by a fuzzy variable 

( )β θ  defined on the credibility space ( ),2 ,CrΘΘ .  

Similar to the interpretation of a stochastic process, 

{ },tX X t += ∈R , a random fuzzy variable is a 

bivariate mapping from ( ), 2ΘΩ × Θ ×A  to the space 

( )( ),R RB , where ( )RB  denotes Borel σ - algebra 

on real number set ( ),= −∞ ∞R� . As to the index, in 

stochastic process theory, index used is referred to as 
time typically, which is a positive (scalar variable), 
while in the random fuzzy variable theory, the 
“index” is a fuzzy number (i.e., variable), say, β . 
Using uncertain parameter as index is not starting in 
random fuzzy variable definition. In stochastic 
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process theory we already know that the stochastic 

process ( ){ },X Xτ ω= ω∈Ω  uses stopping time 

( ),  ∈Ωτ ω ω , in which an (uncertain) random 

variable is used as its index. 
In random fuzzy variable theory, there are different 
types of chances measures proposed for 
characterizing a random fuzzy variable. What we are 
going to use is the average chance measure, denoted 
as ch, which will plays a similar role to a probability 
measure, denoted as Pr , in probability theory. 
Definition 5: (Liu [11], [12]) Let ξ  be a random 
fuzzy variable, then the average chance measure 

denoted by {}ch ⋅ , of a random fuzzy event 

{ }xξ≤ , is  

{ } ( ){ }{ }
1

0

ch Cr |Pr dx xξ ≤ = θ ∈Θ ξ θ ≤ ≥α α∫          (5) 

Then function ( )Ψ ⋅  is called as average chance 

distribution if and only if 

   ( ) { }chx xΨ = ξ≤                                                  (6) 

It is quite important to emphasize here that the 
definition of random fuzzy variable is constructive. 
The mapping order is essential. The following 
theorem is actually a summary of Liu’s definition 
and examples in his book. For example, if a random 
variable η  has zero mean and a fuzzy variableζ , 
then the sum of the two, η ζ+ , results in a random 
fuzzy variable ξ  (Liu, [11], [12]). Accordingly, let 

2(0, )Nη σ∼ , i.e., a normal random variable with 

zero mean and variance 2σ , and let ζ be a triangular 
fuzzy number (i.e., variable), then ξ η ζ= + is a 
normal random fuzzy variable,  denoted as 

( )2,
d

Nξ ζ σ∼ . Liu, [11, 12] also mentioned an example 

in which an exponential density, te−ββ  having a fuzzy 
parameter β . We state Liu’s ideas formally as a 
theorem. 
Theorem 1: Let ζ  be a fuzzy variable defined on the 
credibility space ( )( ), ,CrΘ ΘP  and τ  be a random 

variable defined on the probability space ( )( ), ,PΩ ΩA , 

then 
(1) Let ⊕  be an arithmetic operator, which can be 

“ + ”, “ − ”, “ × ” or “ ÷ ” operation, such that ζ τ⊕  
maps from ( )( ), ,CrΘ ΘP  to a collection of random 

variables on ( )( ), ,PΩ ΩA , denoted by ξ . Then ξ  is 

a random fuzzy variable defined on hybrid 
product space ( )( ) ( )( ), ,Cr , ,PΘ Θ × Ω ΩP A . 

(2) Let :f × →R R R be a continuous, such that ( ),f ζ τ  
maps from ( )( ), ,CrΘ ΘP  to a collection of random 

variables on ( )( ), ,PΩ ΩA , denoted by ξ . Then 

( ),fξ ζ τ=  is a random fuzzy variable defined on 
hybrid product space ( )( ) ( )( ), ,Cr , ,PΘ Θ × Ω ΩP A . 

(3) Let ( );F x θ  be the probability distribution of 
random variable τ with parameter θ  (possible 
vector-valued), then ( );F x ζ  defines a random 
fuzzy variable ξ  on the hybrid product space 

( )( ) ( )( ), ,Cr , ,PΘ Θ × Ω ΩP A . 

Note that the Theorem 1 is merely specifying three 
subfamilies of random fuzzy variables. Particularly, 
the Item (1) and (2) are strictly stating Liu’s 
definition of random fuzzy variable, [11], [12], for 
avoiding the possible confusion with general hybrid 
variable, particularly, fuzzy random variable. A 
straightforward example for Item (2) are linear 
function ( ), ,  , ,f ζ τ α α ζ α τ α α α= + + ∈

0 1 2 0 1 2
R . Another 

example for Item (2) is ( ) ( ), ,  f
αζ τ τ ς α= > 0 . As the 

Item (3), it is a direct extension to Liu’s exponential 
distribution with fuzzy rate parameter, [11, 12].   
  
3. Random fuzzy Poisson processes   

It is well-known fact that a Poisson random variable 
N  takes nonnegative integer-value with probability: 
 

   { }Pr , 0,1,2,
!

k

N k e k
k

−λλ
= = = ⋯                       (7) 

 
where 0λ>  is the parameter representing the rate of 
event occurrences.  

 
3.1. Probabilistic Poisson processes  

In stochastic process theory, Poisson process may be 
defined in different ways although revealed the same 
intrinsic features. Grimmett and Stirzaker [3] stated a 
formal definition as following:  

Definition 8. A Poisson process with intensity λ  is a 

process ( ){ }, 0N N t t= ≥ taking values in 

{ }0,1,2,= ⋯S  such that 

(a) ( )0 0N = ; if s t< , then ( ) ( )N s N t≤ ; 

(b) 

( ) ( ){ }
( )

( )
( )

Pr |

  if 1

               if 1

1 if 0

N t h n m N t n

h o h m

o h m

h o h m

+ = + =

 λ + == > −λ + =
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(c) if s t<  then number ( ) ( )N t N s−  of an emission 

in the interval ( ],s t  is independent of the times of 

emissions during [ )0,s .  

It is fairly straightforward that at any time t , ( )N t  is 

a Poisson random variable with rate tλ  with 
probability:  
 

   ( ){ } ( )
Pr , 0,1,2,

!

k

tt
N t k e k

k
−λλ

= = = ⋯              (8) 

 

Associated with probabilistic Poisson processes, the 
critical fact is the distributions of the inter-arrival 
times which have many applications to reliability and 
risk analysis.   
Theorem 2. The successive inter-arrival (sojourn) 

times in a Poisson process ( ){ }, 0N N t t= ≥  with 

intensity λ  are i.i.d. variables with common 
probability density function te−λλ .  
Theorem 3. The waiting time to the thn  event, nW , in 

a Poisson process ( ){ }, 0N N t t= ≥  with intensity 

λ  has a gamma distribution with probability density 

function ( )
( )
( )

1

1 !n

n

t
W

t
f t e

n

−

−λλ
= λ

−
. 

The proof of theorem 2 is an application of Poisson 
process definition, while the proof of theorem 3 is 
completed by noticing the fact that the distribution of 
waiting times is merely that of n i.i.d. exponential 
variables.  
 
3.2. Random fuzzy stationary Poisson 
processes  

According to Theorem 1, an intuitive formation of a 
random fuzzy Poisson process is to assume the 
intensity λ  to be a credibilistic fuzzy variable 

defined on credibility space ( )( ), ,CrΘ ΘP  with 

credibility distribution function Λ .  

Definition 9. A random fuzzy Poisson process with 
credibilistic fuzzy intensity λ  on credibility space 

( )( ), ,CrΘ ΘP  is a process ( ){ }, 0N N t t= ≥  taking 

values in { }0,1,2,= ⋯S  such that 

(a) ( )0 0N = ; if s t< , then ( ) ( )N s N t≤ ; 

(b) 

( ) ( ){ }
( )

( )
( )

Pr |

  if 1

               if 1

1 if 0

N t h n m N t n

h o h m

o h m

h o h m

+ = + =

 λ + == > −λ + =

 

(c) if s t<  then number ( ) ( )N t N s−  of an emission 

in the interval ( ],s t  is independent of the times of 

emissions during [ )0,s .   

It is obvious that in Definition 9 the intensity 
parameter λ  is a credibilistic fuzzy parameter 
(credibilistic fuzzy variable, indeed). For a given 

value of parameter 0λ=λ , ( ){ }, 0N N t t= ≥  is just 

a probabilistic Poisson process. However, if λ  is a 
fuzzy parameter, then for any given time t , the count 

( )N t is a random fuzzy variable according to 

Theorem 1. Therefore,   Definition 9  defines a 
stationary random fuzzy Poisson process.  
 
Theorem 5. The successive inter-arrival (sojourn) 
times in a random fuzzy Poisson process 

( ){ }, 0N N t t= ≥  with credibilistic fuzzy intensity 

λ  having a piecewise linear credibility distribution 
 

   ( )

( )

( )

0            

     
2

1
               

2
2

2

1          

x a

x a
a x b

b a

x b x c

x d c
c x d

d c

x d

 ≤ − < ≤ −Λ = < ≤ + − < ≤ − >

                         (9) 

 
are i.i.d. random fuzzy variables with common 
average chance density: 
 

   

( )
( ) ( )

( ) ( )

2

2

=
2 2

       
2 2

at bt bt at

ct dt ct dt

e e be ae
t

b a t b a t

e e ce de

d c t d c t

− − − −

− − − −

− −
+

− −

− −
+ +

− −

ψ

              (10) 

 
Proof: Note that 
 

   ( ){ }Pr 1 tT t eλλ ≤ = −                                      (11) 

 

Therefore event ( )( ){ }{ }: Pr T t≤ ≥θ λ θ α  is a 

fuzzy event and is equivalent to the fuzzy event 
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( ) ( ){ }: ln 1 t≥− −θ λ θ α . As a critical toward the 

derivation of the average chance distribution, it is 
necessary to calculate the credibility measure for 

fuzzy event ( ) ( ){ }: ln 1 t≥− −θ λ θ α , i.e., obtain 

the expression for 
 

   ( ) ( ){ }Cr : ln 1 t≥− −θ λ θ α                          (12) 

 
Recall that for the credibilistic fuzzy variable,λ , the 
credibility measure takes the form 
 

   ( ){ }

( )

( )

0            

     
2

1
Cr :                

2
2

2

1          

x a

x a
a x b

b a

x b x c

x d c
c x d

d c

x d

 ≤ − < ≤ −≤ = < ≤ + − < ≤ − >

θ λ θ         (13) 

 
Accordingly, the range for integration with α can be 
determined as shown in Table 1. Recall that the 

expression of ( )ln 1x tα=− −  appears in 

Equations (12) and (13), which facilitates the link 
between intermediate variable α  and average 
chance measure. 
 
Table 1.  Range analysis for α  
 

x  α  and credibility measure expression 

x a−∞< ≤

 

Range for α  0 1 ate−≤ ≤ −α  

( ) ( ){ }Cr ln 1 t≥− −λ θ α  1 

a x b< ≤  Range for α  1 1at bte e− −− < ≤ −α  

( ) ( ){ }Cr ln 1 t≥− −λ θ α  ( ) ( )( )1 2x a b a− − −  

b x c< ≤  Range for α  1 1bt cte e− −− < ≤ −α  

( ) ( ){ }Cr ln 1 t≥− −λ θ α  0.5 

c x d< ≤  Range for α  1 1ct dte e− −− < ≤ −α  

( ) ( ){ }Cr ln 1 t≥− −λ θ α  ( ) ( )( )2d x d c− −  

d x< <+∞

 

Range for α  1 1dte−− < ≤α  

( ) ( ){ }Cr ln 1 t≥− −λ θ α  0 

 
The average chance distribution for the exponentially 
distributed random fuzzy lifetime is then derived by 
splitting the integration into five terms according to 
the range of α  and the corresponding mathematical 
expression for the credibility measure 

( ) ( ){ }Cr : ln 1 t≥− −θ λ θ α , which is detailed in 

Table 3. Then the exponential random fuzzy lifetime 
has an average chance distribution function:  

   
( ) ( ) ( ){ }

( ) ( )

1

0

= Cr : ln 1 d

       1
2 2

bt at dt ct

t t

e e e e

b a t d c t

− − − −

Ψ ≥− −

− −
= + +

− −

∫ θ λ θ α α

                (14) 

 
and the average chance density is 

   
( )

( ) ( )

( ) ( )

2

2

t =
2 2

       
2 2

at bt bt at

ct dt ct dt

e e be ae

b a t b a t

e e ce de

d c t d c t

− − − −

− − − −

− −
+

− −

− −
+ +

− −

ψ
                          (15) 

 
This concludes the proof. 
Similar to the probabilistic reliability theory, we 
define a reliability function or survival function for a 
random fuzzy lifetime and accordingly name it as the 
average chance reliability function, which is defined 
accordingly as 
 

   ( ) ( )1t tΨ = −Ψ                                                (16) 

 
Then, for exponential random fuzzy lifetime, its 
average chance reliability function is 
 

   ( )
( ) ( )

=
2 2

at bt ct dte e e e
t

b a t d c t

− − − −− −
Ψ +

− −
                      (17) 

 
Theorem 6. The waiting time to the thn  event, nW , 
in a random fuzzy Poisson process 

( ){ }, 0N N t t= ≥  with fuzzy intensity λ  having a 

credibility distribution Λ  has a average chance 
distribution function: 
 

   ( )
1 2

2 ,1

0

1
2
nt d
t
−α

  χ    Ψ = −Λ α       
∫         (18) 

 
Proof: Note that the waiting time for a fixed 0λ  

follows a gamma density ( )
( )
( )

1

1 !n

n

t
W

t
f t e

n

−

−λλ
= λ

−
 

Further note that 2
0 22 n nWλ χ∼ , therefore event 
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( ){ }{ }
( ){ }{ }

( ){ }{ }

( )

2
2

2
2 ,1

: Pr

: Pr 2 2

: Pr 2

:
2

n

n

n

n

W t

W t

t

t
−α

θ θ ≤ ≥α

= θ λ θ ≤ λ ≥α

= θ χ θ ≤ λ ≥α

  χ = θ λ θ ≥    

 

 
Hence the average chance distribution 

   

( )

( ){ }( )
1

0

1 2
2 ,1

0

Cr : Pr

1
2

nW

n

n

t

W t d

d
t
−α

Ψ

= θ θ ≤ ≥α α

  χ    = −Λ α       

∫

∫

                    (19) 

 
If we specify the form of the credibility distribution 
of Λ , then specific form of average chance 
distribution should be obtained. 
 
3.3. Time-dependent random fuzzy Poisson 
processes 

In reliability engineering and risk analysis, the non-
stationary Poisson processes enjoy wide applications 
because the intensity function is time-dependent. It is 
expected that the mathematical treatments may be 
much more complicated since the fuzzy functional 
nature of intensity when the parameters are 
credibilistic fuzzy variables. For a concrete 
discussion purpose, we narrow our attention to a 
linear intensity function:  
 
   ( ) 0 1 0 1,  0,  0t tλ = β +β β > β >                           (20) 

 
Further, we assume that 0β  and 1β both have 
piecewise linear credibility distribution:  
 

   ( )
( )

( )

0        

 
2

,  0,1
2

2

1          

i

i
i i

i i

i
i i

i i
i i

i

x a

x a
a x b

b a
x i

x c b
b x c

c b

x c

 < − ≤ < −Λ = = + − ≤ < − ≥

     (21) 

 
Then the integrated the intensity function (mean 
measure):  
 

   ( ) 2
0 1m t t t= β +β                                              (22) 

 

 will have a credibility distribution: 
 

   ( ) ( )
( )

( )

0        

 
2

2

2

1          

m t

y a

y a
a y b

b a
y

y c b
b y c

c b

y c

 < − ≤ < −Λ = + − ≤ < − ≥

                   (23) 

where 
 

   

2
0 1

2
0 1

2
0 1

a a t a t

b b t b t

c c t c t

= +

= +

= +

                                                     (24) 

 
In general, the credibility distribution of the 
integrated intensity function( )m t , it is necessary to 

apply Zadeh’s [14] extension principle, denoted as 

( )m tΛ , but for the piecewise linear credibility 

distribution case, the mathematical arguments are 
simplier. 
Now let us derive the average chance distribution for 
the inter-arrival times.  
 

   ( ) ( ){ }( )
1

0

Cr : PrT t T t dΨ = θ θ ≤ ≥α α∫             (25) 

 

 Note that for the first arrival time, 
 

   

( ){ }{ }

( )

( ){ }
( ) ( ){ }

1

0 1

0

: Pr

:1 exp

:1

: ln 1

t

m t

T t

u du

e

m t

−

θ θ ≤ ≥α

     = θ − − β +β ≥α       

= θ − ≥α

= θ ≥− −α

∫
 

 
Therefore, the average chance distribution for 1T , the 
first inter-arrival time, is 
 

   

( )

( ){ }( )

( )( )

1

1

0

1

0

Cr : Pr

Cr : ( ) ln 1

T t

T t d

m t d

Ψ

= θ θ ≤ ≥α α

= θ ≥− −α α

∫

∫

                     (26) 
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It is noticed that ( )ln 1y=− −α , therefore,  

   ( ){ }
( )

( )

1        

2 2
 

2
Cr

2

0          

y a

b y
a y b

b a
m t y

c y
b y c

c b

y c

 < − − ≤ < −> = − ≤ < − ≥

       (27) 

 
Table 2.  Range analysis for α  
 

x  α  and credibility measure expression 

y a−∞< ≤

 

Range for α  
( )0 1 m te−≤ ≤ −α  

( ){ }Cr ln(1 )m ≥− −θ α  1 

a y b< ≤  Range for α  1 1at bte e− −− < ≤ −α  

( ){ }Cr ln(1 )m ≥− −θ α  ( ) ( )( )2 2b a y b a− − −

 
b y c< ≤  Range for α  1 1bt cte e− −− < ≤ −α  

( ){ }Cr ln(1 )m ≥− −θ α  ( ) ( )( )2c y c b− −  

c x< <+∞

 

Range for α  1 1dte−− < ≤α  

( ){ }Cr ln(1 )m ≥− −θ α  0 

 
Hence,  
 

   

( ) ( )( )
( )

( )
( )( )

( )

( )
( )( )

( )

( )

( )

( )
( ) ( )( )

( )
( )

( )

( )
( ) ( )( )

( )
( )

1

1

0

1 1

0 1

1 1

1 1

1

1

1

1

Cr : ( ) ln 1

2 ln 1
1

2

ln 1
0

2

2
1

2

1
ln 1

2( )

2

1
ln 1

2( )

m a m b

m a

m c

m b m a

m b

m a

m b

T

e e

e

e

e e

m a m a m b

e

e

m b m c

e

e

t m t d

b a
d d

b a

c
d d

b a

b a
e e e

b a

d
b a

c
e e

c b

d
c b

− −

−

−

− −

−

−

−

− −

−

−

− −

− − −

−

−

− −

−

−

Ψ = θ ≥− −α α

− + −α
= × α+ α

−

+ −α
+ α+ × α

−

−
= − + −

−

+ −α α
−

+ −
−

+ −α α
−

∫

∫ ∫

∫ ∫

∫

( )m c−

∫
  

 
Note that 
 

 ( ) ( ) ( ) ( )ln 1 1 1 ln 1d−α α= −α − −α −α∫         (28) 

 
Hence 

    
( )

( )

( )

( ) ( )( )

( ) ( ) ( ) ( )

1

1

ln 1

m b

m a

e
m b m a

e

m b m a

d e e

m b e m a e

−

−

−
− −

−

− −

−α α= −

− +

∫                 (29) 

 
and 
 

   
( )

( )

( )

( ) ( )( )

( ) ( ) ( ) ( )

1

1

ln 1

m c

m b

e
m c m b

e

m b m b

d e e

m c e m b e

−

−

−
− −

−

− −

−α α= −

− +

∫                  (30) 

 
Combine above arguments, it is established that 
 

   

( )

( )

( )
( ) ( )( )

( ) ( ) ( ) ( )( )

( )
( ) ( )( )

( ) ( ) ( ) ( )( )

1

2 1
1

2

1

2( )

1

2

1

2( )

T

m a m a m b

m b m a

m b m c

m c m b

t

b a
e e e

b a

m b e m a e
b a

c
e e

c b

m c e m b e
c b

− − −

− −

− −

− −

Ψ =

− −
− + −

−

+ − +
−
−

+ −
−

+ − +
−

             (31) 

 
Next let us derive the thi  inter-arrival time. Recall 

that conditioning on the ( )1 st
i − occurrence time 

1iw− , the mean measure is 
 

   ( ) ( ) ( )2 2
1 0 1 1 1| i i im t w t w t w− − −=β − +β −             (32) 

 
Accordingly, the credibility distribution for 
( )1| im t w−  is 

 

   ( )( )
( )

( )
1|

0        

 
2

2

2

1          

im t w

y a

y a
a y b

b a
y

y c b
b y c

c b

y c

−

 < − ≤ < −Λ = + − ≤ < − ≥

             (33) 

 
where 
 

   

( ) ( )
( ) ( )
( ) ( )

2 2
0 1 1 1

2 2
0 1 1 1

2 2
0 1 1 1

i i

i i

i i

a a t w a t w

b b t w b t w

c c t w c t w

− −

− −

− −

= − + −

= − + −

= − + −

                         (34) 
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Thus, the average chance distribution for the thi  
inter-arrival time is: 
 

   

( )

( )

( )
( ) ( )( )

( ) ( ) ( ) ( )( )

( )
( ) ( )( )

( ) ( ) ( ) ( )( )

1 1 1

1 1

1 1

1 1

| | |

| |
1 1

| |

| |
1 1

2 1
1

2

1
| |

2( )

1

2

1
| |

2( )

i

i i i

i i

i i

i i

T

m a w m a w m b w

m b w m a w
i i

m b w m c w

m c w m b w
i i

t

b a
e e e

b a

m b w e m a w e
b a

c
e e

c b

m c w e m b w e
c b

− − −

− −

− −

− −

− − −

− −
− −

− −

− −
− −

Ψ =

− −
− + −

−

+ − +
−
−

+ −
−

+ − +
−

  (35) 

 
It is necessary to emphasize that in the expression of 
the average chance distribution of the inter-arrivals 
(either Equation (31) for the first arrival, or Equation 
(35) for the thi  arrival) the time t  factor is containing 
in the parameters (a,b,c) as shown in Equation (24) 
for the first arrival and Equation (34) for the thi  
arrival. Also, the functions for parameters (a,b,c) are 
changed for the successive arrivals as indicated in 
Equation (34). 
 
4. A parameter estimation scheme  

The parameter estimation is in nature an estimation 
problem of credibility distribution from fuzzy 
observations. Guo and Guo [8] recently proposed a 
maximally compatible random variable to a 
credibilistic fuzzy variable and thus the fuzzy 
estimation problem is converted into estimating the 
distribution function of the maximally compatible 
random variable. The following scheme is for 
estimating the piecewise linear credibility 
distribution. 
Definition 10:  Let X  be a random variable defined 
in ( )( ),R RB  such that 

   Crc P Xµ ξ µ− −= = =1 1
� �  (36) 

Then X  is called a maximally compatible to fuzzy 
variable  
ξ . 
In other words, random variableX can take all the 
possible real-values the fuzzy variable ξ  may take 

with and the distribution of X  , ( )XF r  equals the 

credibility distribution of ξ , ( )rξΛ  for all r ∈R . 

It is aware that the induced measure Crcµ ξ −= �
1  and 

measure P Xµ −= 1
�  are defined on the same 

measurable space ( )( ),R RB . Furthermore, we notice 

that the pre-image ( ) ( )Bξ − ∈ Θ1 P , but, the pre-image 

( ) ( ) ( )X B− ∈ Θ ⊂ Θ1 A P , which implies that for the 

same Borel set ( )B∈ RB ,  the pre-images under 

fuzzy variable ξ  and random variable are not the 
same. It is expected that  
 
   ( ){ } ( ){ }: :X r rθ ∈Θ θ ≤ ⊆ θ ∈Θ ξ θ ≤                   (37) 

 
but  
 

   
( ){ }
( ){ }

Pr :

Cr :

X r

r

θ ∈Θ θ ≤

= θ ∈Θ ξ θ ≤
                                         (38) 

 
The statistical estimation scheme for parameters 

( ), ,a b c  of the credibility distribution based on fuzzy 

observations { }1 2, , , nx x x⋯  can be stated as: 

Estimation Scheme 1.  
Step 1: Rank fuzzy observations { }1 2, , , nx x x⋯ to 

obtain “order” statistics ( ) ( ) ( ){ }1 2, , , nx x x⋯  in 

ascending order; 
Step 2: Set ( )1â x=  and ( )ˆ

nc x= ; 

Step 3: Set a tentative estimator for b ,  

   ( ) ( )14
ˆ

2

n n

e

x x x
b

− −
=  (39) 

where 

   
1

1 n

n i
i

x x
n =

= ∑  (40) 

Step 4: Identify ( )0i
x  from ( ) ( ) ( ){ }1 2, , , nx x x⋯  such 

that ( ) ( )10 e ii
ˆx b x≤ <  and 0 11 i i< < , then we may see 

( ) ( ) ( ){ }
01 2, , , ix x x⋯  as a set of order statistics from 

uniform [a,b]. Hence the “sufficient” statistic for 
parameter b  is ( )0i

x . 

Then ( ) ( ) ( ) ( )( )
01

ˆˆ ˆ, , , , nia b c x x x=  is the parameter 

estimator for the piecewise linear credibility 
distribution.  

   ( )
( )

( )

ˆ0      

ˆ ˆˆ
ˆ ˆ2

ˆ
ˆˆ 2 ˆ ˆ

ˆˆ2

ˆ1         

x a

x a
a x b

b a
x

x c b
b x c

c b

x c

<
 − ≤ <
 −
Λ = 

+ − ≤ <
 −

 ≥

 (41) 

 
The next issue is how to extract the information on 
intensity rate λ  in stationary random fuzzy Poisson 
process.  
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It is noticed that for probabilistic Poisson process 
case, the interpretation of intensity λ  is the 
occurrence rate in unit time. Based on such an 
observation, therefore, for any individual value 0λ  
the fuzzy intensity may take, it results in a 
probabilistic Poisson process. Sample this Poisson 
process until 0n  events and record the total waiting 

time
0nw , then 

00 0
ˆ

nn wλ =  is an estimate of intensity 

0λ . Repeat the sampling procedure from the random 
fuzzy Poisson process as many times as possible, 
say, m  times, then the intensity “observation” 
sequence is  
 

   { }
0 0 0

1 2
0 0 0

1 2 1 2
ˆ ˆ ˆ, , , , , ,

m

m m
n n n

n n n

w w w

    λ λ λ =     
⋯ ⋯         (42) 

 
Apply the Estimation Scheme 1 to the estimated rate 

observations { }1 2
ˆ ˆ ˆ, , , mλ λ λ⋯  the piecewise linear 

credibility distribution shown in Equation (41).  
For the non-stationary random fuzzy Poisson 
process, the mean measure involves two linear 
piecewise credibility distributions for fuzzy 
parameter s0β  and 1β  respectively.  
The scheme can state as follows: 
Step 1: Sampling procedure from the random fuzzy 
Poisson process { }, 0tN N t= ≥  m  times. Let the thi  

0n  events the waiting time are  { }
01 2, , ,i i i

nw w w⋯ .  

Step 2: For the thi  sample, perform the maximum 
likelihood estimation and obtain the parameter pair 

( )0 1
ˆ ˆ,i iβ β  which is regarded as the fuzzy parameters 

taking values. Repeat the estimation process until all 

m  MLE pairs ( ){ }0 1
ˆ ˆ, , 1,2, ,i i i mβ β = ⋯  are obtained. 

Step 3: Applying the Estimation Scheme 1 to fuzzy 

sequences { }1 2
0 0 00

ˆ ˆ ˆ, , , mβ β β⋯  and { }1 2
1 1 11

ˆ ˆ ˆ, , , mβ β β⋯  

respectively, the parameters ( )0 0 0
ˆˆ ˆ, ,a b c  and ( )1 1 1

ˆˆ ˆ, ,a b c  

define the two piecewise linear credibility 
distributions for 0β  and 1β  respectively. 
 
5. A simulation scheme 
 

Simulation of a random fuzzy Poisson process is 
intrinsically two-stage procedure: a fuzzy parameter 
simulation for generating realizations { }1 2, , , nλ λ λ⋯  

from a piecewise linear credibility distribution 
function Λ and a waiting times sequence:  

   
1

n

n i
i

W T
=

=∑                                                     (43) 

where 1 2, , , nT T T⋯  are i.i.d. exponential with common 
probability density function te−λλ . 

As to the fuzzy parameter simulation, we utilize the 
maximally compatible random variable to a fuzzy 
variable concept and the inverse transformation of 
the probability distribution function approach for 
generating fuzzy variable realizations. An algorithm 
is stated as follows:  
Fuzzy simulation scheme 1: 
Step 1: Simulating uniform random variable 
uniform[0,1], and denote the simple random 
sample as { }, , , nu u u

1 2
⋯ ; 

Step 2: Set ( ) ( ),  , , ,i ix u i nΛ = = ⋯1 2 ; 

Step 3: Set ( ),  , , ,ix i n= 1 2⋯ : 

 

   
( )

( )
2 if 0 0.5

2 2 if  0.5 1
i i

i
i i

a b a u u
x

b c c b u u

 + − ≤ ≤= − + − ≤ ≤
             (44) 

 
Then { }, , , nx x x

1 2
⋯ is a sample from the fuzzy 

variableξ  with a piecewise linear credibility 
distributionΛ . 
Next we state a random fuzzy Poisson process 
simulation scheme. 
Simulation scheme 2:  Simulating a stationary 
random fuzzy Poisson process. 
Step 1: Simulate a sequence of uniform(0,1), 
denoted as { }1 2, , , nu u u⋯ ,  

Step 2: { }1 2, , , nτ τ τ⋯   

 

   ( )1
ln 1 ,  1,2, ,i iu i nτ =− − =

β
⋯                   (45) 

 
are the exponentially distributed random lifetime. 
Step 3: in term of Fuzzy Simulation Scheme 1, Fuzzy 
variable sample { }, , , nx x x

1 2
⋯  is obtained.  

Step 4: { }1 2, , , nT T T⋯  

 

  ( )1
ln 1 ,  1,2, ,i i

i

T u i n
z

=− − = ⋯                   (46) 

 
which construct a stationary random fuzzy Poisson 
process { }, 0tN N t= ≥ . 

As to the time-dependent random fuzzy Poisson 
process, we state an algorithm to illustrate the idea. 
For example, we simulate a random fuzzy Poisson 
process with power law intensity function having a 
fuzzy scale parameter. 
Simulation scheme 3: Simulating a time-depenedent 
random fuzzy Poisson waiting times { }, 1,2, ,iW i n= ⋯ , 

which forms a power law process. Note that the 
conditional Weibull distribution 
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   ( )| 1 exp
t x x

F t x
β β       +         = − − −           η η         

              (48) 

Then  
Step 1: For given sample from Uniform(0,1), 
{ }1 2, , , nu u u⋯ ,  

 

   ( )
1

1

ln ln 1 ,  1,2, ,
nW

i iW e u i n
−

β
     η 

      = η − − =         
⋯  (49) 

 
are waiting times in the random fuzzy Poisson 
process with power law. 
Step 2: As to the fuzzy scale parameter,η , in term of 

Fuzzy Simulation Scheme 1, { }, , , nx x x
1 2
⋯  is the 

sample from the fuzzy scale parameter  Finally, let 
 

   ( )
1

1

ln ln 1 ,  1,2, ,
n

i

W

x
i i iW x e u i n

−

β
     

      = − − =          
⋯  (50) 

 
will generate random fuzzy waiting times 
{ }1 2, , , nW W W⋯  with fuzzy scale parameter η , which 

construct a random fuzzy Poisson process with 
power law intensity having a fuzzy scale parameter 
η . 
  

6. Conclusion 

In this paper, we give a systematic treatment of 
random fuzzy Poisson processes not only from the 
stationary one and then non-stationary one, but also a 
parameter estimation scheme as well as a simulation 
scheme is proposed. In this way, the foundation for 
the random fuzzy Poisson processes is formed 
although in its infant stage, particularly, the time-
dependent random fuzzy Poisson process. The 
applications to reliability engineering fields and the 
risk analysis now can extend from random 
uncertainty only cases to randomness and fuzziness 
co-existence cases. It is expecting that this 
development will help the reliability and risk 
analysis researchers as well as reliability analysts and 
engineers. 
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