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Abstract

Poisson processes, particularly the time-dependgténsion, play important roles in reliability amigk

analysis. It should be fully aware that the Poissmdeling in the current reliability engineeringdarisk

analysis literature is merely an ideology underolithe random uncertainty governs the phenomenathler
words, current Poisson Models generate meaningullts if randomness assumptions hold. Howevenghle
world phenomena are often facing the co-existeeatity and thus the probabilistic Poisson modefiragtices
may be very doubtful. In this paper, we define tdwedom fuzzy Poisson process, explore the relatethge
chance distributions, and propose a scheme fopdhemeter estimation and a simulation scheme ds il

expecting that a foundational work can be estabtifor Poisson random fuzzy reliability and rislakysis.

1. Introduction models for modeling fuzziness and randomness co-
existence is necessary.
In this paper, we are trying to offer a systematic

) ~ " treatment for the random fuzzy Poisson processes no
Just as Carvalho and Machado [1] commented, “In nly in the mathematical sense (building models

global market, companies must deal with a high ratq, ased on postulates and definitions) but also é th

of chapges n _bglsmess denvwotn_mtgnt. "'f Ttuestatistical sense (estimation and hypothesis gpstin
parameters, variables and restrictions o €ased on sample data).

production system are inherently vagueness.”
Therefore the co-existence of random uncertainty2
and fuzzy uncertainty is inevitable reality of dgfe
and reliability analysis and modelling. Without a solid understanding of the intrinsic feat

of random fuzzy variable, there is no base for
exploring the modelling of random fuzzy processes.
Therefore, it is necessary to briefly review Liu’s
hybrid variable theory established on the axiomatic
credibility measure and probability measure
foundations.

First let us review the credibilistic fuzzy variabl

It should be fully aware that vagueness is annasiti
feature in today’s diversified business environragnt

. Foundation of random fuzzy variable

It is a well-established fact that Poisson processe
and particularly the non-stationary Poisson progess
play important roles in safety and reliability
modeling. Many researchers contributed to the
probabilistic developments, see Crow [2], Guo and
Love [4], [5], [6], Guo et al [7], Love and Guo,][9
[10] etc. Logically, it is obvious that probabilist
modeling is only a good approximation to real world theory: Let© be a nonempty set, ang#(o) the
problem when random uncertainty governs thepower set on ©. Each element, let us
phenomenon. If fuzziness and randomness botlsay,AD©,AOP(0) is called an fuzzy event. A

appear then probabilistic modeling may be , mber denoted asr{ A}, 0<Cr{ A <1, is assigned
guestionable. Therefore, developing the appropriate
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to event AOP(©), which indicates the credibility The induced distribution by fuzzy variafleis just
grade with which event ADR(©) occurs. the credibility distribution which characterizeseth
measurement of vague (or fuzzy) uncertainty

Cr{ A} satisfies following axioms given by Liu [11, associated with every event with fuzzy variaple
12]; Definiion 3 (Liu [11, 12]) The credibility
Axiom 1 Cr{6} =1. distribution A:R - [0,] of a fuzzy variable on
Axiom 2: Cr{flis non-decreasing, i.e., whenever (©.%3(0) Cr) s

ADB,Cr{A <Cr{B} . ’ ’

Axiom 3. cr{j is self-dual, i.e., for any A(x)=cr{eno|e(8)s % (4)
ADZO,Cr{A}+Cr{A°}:1. Credibility measure, as an axiomatic measure

Axiom 4 cr{U, A} =suff C{A}] for any{A} with development, the set class, power $¢0) plays the

i critical roles in defining set function credibility
Cr{A} < 05. measureCras well as the measurability of fuzzy
Definition 1 (Liu [11, 12]) Any set function variable. However, it is necessary to keep in mind
Cr:p(e)—[0,1 satisfies Axioms 1-4is called a that power setB(©) is the largestos-algebra of

credibility measure. The tripld©,%B(0),Cr) is spaceo . The establishment of set function on power
Y pe( ‘]3( ) ) set inevitably brings different feature from that

called the credibility measure space. establishing probability measure on the smaltest

It should be fully aware that credibility measurd_yp algebra 2 (Q)of a spaceq. Therefore, a fuzzy

follows sub-o-additive property, but probability . . .

measure does enjoy the -additive property. This variable is not a fuzzy set in the sense of Zadeh'’s

character of credibility measure relaxes thefuz.Zy theory [13], [14].’ n Wh'Ch a fuzzy set is
defined by a membership function.

assumptions of the set mapping so that it mighecov . ) .
a wider category of real world uncertain problems,l‘Iu [11]. [12] defines a random fuzzy variable as a

but brings new difficulties in its mathematical Mapping from the credibility spade,2”,Cr) to a set

treatments. of random variables. Again, we should be aware tha
Definition 2 A fuzzy variable { is a measurable a random fuzzy variable here takes real numbers as
mapping, i.e.f:(e,qs(o)) R (R,%(R)). its values, which behaves very similar to a random

N , variable. We would like to present an intuitive
The measurable mapping is characterized by th§efinition similar to that of stochastic process in

membership of the pre-image of eveBt=(—co,r]  probability theory and expect readers who are

under fuzzy variablef to the power setp(©). In familiar with the basic concept of stochastic
other words processes can understand the comparative definition
’ Definition 4 A random fuzzy variable, denoted as

0BOB(R) {600: 08 0p(0) 1) E:{XB(G),ODG)} , is a collection of random

variables X, defined on the common probability

The measurability of fuzzy variabfe definitely space(Q,Ql,Pr) and indexed by a fuzzy variable

induces a measure on the measurableg(g) defined on the credibility spa¢e,2° Cr).

spaceR,B(R)). Let us denote the induced measure_.. . . . .
P €€ B )) u indu Y€ Similar to the interpretation of a stochastic psxe

asp°. For OBO®B(R), the induced measure is X:{Xl,tDR+}, a random fuzzy variable is a

bivariate mapping fron(Qxe,le 2@) to the space
(R,B(R)), where B(R) denotes Boreb - algebra

Therefore, further denote 4 =Cro&" and  on real number seR=(-w,). As to the index, in
specifically, the distribution is defined by the stochastic process theory, index used is refeoedt
induced measure time typically, which is a positive (scalar variable),
while in the random fuzzy variable theory, the
“index” is a fuzzy number (i.e., variable), sa§.
Using uncertain parameter as index is not staiiting
random fuzzy variable definition. In stochastic

w{B}=cr{gno:f0B =C{o00 :§(w)< 1} (2)

AX)=p{(-oor]}=cCr{oco £ (0)<r} (3)
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process theory we already know that the stochasti€2)Let f:rxr - R be a continuous, such tha{¢,r)
, Q} uses stopping time maps from(e,p(e).cr) to a collection of random

7(w), we€, in which an (uncertain) random variables on (a.x(a).p), denoted by¢. Then
variable is used as its index £=1(¢.r) is a random fuzzy variable defined on

In random fuzzy variable theory, there are differen  hybrid product spacge,p(e).cr)x(2.2(2) P).

types of chances measures proposed fo3)Let F(x6) be the probability distribution of
characterizing a random fuzzy variable. What we are  random variabler with parameters (possible
going to gse |s_ the average_chance measure, d_gnoted vector-valued), thenr(x¢) defines a random
as ch, which will plays a similar role to a probability
measure, denoted &3, in probability theory.
Definiion 5 (Liu [11], [12]) Let ¢ be a random  (®%#(®).C)x(2:2(2)F). B

fuzzy variable, then the average chance measurblOt€ that theTheorem lis merely specifying three

subfamilies of random fuzzy variables. Particularly
denoted by ch{}, of a random fuzzy event ye"jiem (1) and (2) are strictly stating Liu's

process X ={ Xy

o)

fuzzy variable ¢ on the hybrid product space

{gg x}, is definition of random fuzzy variable, [11], [12], o
. avoiding the possible confusion with general hybrid
chit <xt= [c{ocoOlPde(0)< x! >al a 5 variable, particularly, fuzzy random variable. A
fe=x [ { | l{g( ) } } ®) straightforvard example for Item (2) are linear
Then function (-) is called as average chance fUNCONf(¢.r)=a, +al+ar, a,a a0k . Another
distribution if and only if example for Item (2) isf(¢,7)=(r/c)", a>0. As the
Item (3), it is a direct extension to Liu’'s expotiah
¥(x)=ch{¢ < x} ) (6 distribution with fuzzy rate parameter, [11, 12].

It is quite important to emphasize here that the .
definition of random fuzzy variable is constructive 3 Random fuzzy Poisson processes

The mapping order is essential. The following |t is well-known fact that a Poisson random vamabl

theorem is actually a summary of Liu's definition N takes nonnegative integer-value with probability:
and examples in his book. For example, if a random

variable 7 has zero mean and a fuzzy variaple N
then the sum of the tway +{, results in a random Pr{N = k}zﬁ k=012 (7)
fuzzy variable ¢ (Liu, [11], [12]). Accordingly, let

n~N(0,0%), i.e., a normal random variable with where X > 0 is the parameter representing the rate of

- . event occurrences.
zero mean and varianeg , and let{ be a triangular

fuzzy number (i.e., variable), thed=n+Jis a

normal random fuzzy variable, denoted as ) ]
In stochastic process theory, Poisson process may b

d . .
€~N(G,0®). Liu, [11, 12] also mentioned an example gefined in different ways although revealed the esam
in which an exponential densitge ™ having a fuzzy intrinsic features. Grimmett and Stirzaker [3] etha
parameters. We state Liu's ideas formally as a formal definition as following:

theorem. ' _ Definition 8 A Poisson process with intensity is a
Theorem 1Let ¢ be a fuzzy variable defined on the process N :{N(t),tz 0} taking values in

credibility space (e,3(0).cr) and r be a random
. . i, S={0,1,2;--} such that
variable defined on the probability spage().p),

3.1. Probabilistic Poisson processes

then (@) N(0)=0;if s<t, thenN(s)< N(1);
(1)Let o be an arithmetic operator, which can be
“am U T M or <" operation, such thar oz Pr{N(t+ h)=n+ m| N §= r}
maps from(e,p(e).cr) to a collection of random hto(h) i m=1
variables on(o,2(),pP), denoted bys. Then¢ is (b) —1 o(h) ifm> 1

a random fuzzy variable defined on hybrid

product spacée,(e),cr)x(Q,2(x).P). 1-Xh+o(h) if m=0
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(c) if s<t then numbem (t)— N(s) of an emission
in the interval(s,t is independent of the times of
emissions during0,s).

It is fairly straightforward that at any tinte N(t) is

a Poisson random variable with ratst with
probability:

Pr(n()=K) =L e ke 0.2 ®)

Associated with probabilistic Poisson processes, th

critical fact is the distributions of the inter-aal

times which have many applications to reliabilibda

risk analysis.

Theorem 2 The successive inter-arrival (sojourn)

times in a Poisson proceds ={N(t),t>0} with

intensity X\ are i.i.d. variables with common

probability density functiorhe ™ .

Theorem 3The waiting time to tha™ event,W,, in

a Poisson proces = { N(t),t> 0} with intensity

X has a gamma distribution with probability density
n-1

<>\t> >\e7Xt )

(n—-1)!

The proof of theorem 2 is an application of Poisson

process definition, while the proof of theorem 3 is

completed by noticing the fact that the distribotaf

waiting times is merely that afi i.i.d. exponential
variables.

function f,, (t)=

3.2. Random fuzzy stationary Poisson
processes

According toTheorem 1lan intuitive formation of a
random fuzzy Poisson process is to assume th
intensity X to be a credibilistic fuzzy variable

defined on credibility space(©,93(©),Cr) with
credibility distribution functionA .

Definition 9 A random fuzzy Poisson process with
credibilistic fuzzy intensityx on credibility space

(6,9(©),Cr) is a processN ={N(t),t> 0} taking
values inS ={0,1,2;--} such that

(@) N(0)=0;if s<t,thenN(s)< N(1);

Pr{N(t+h)=n+ m| N }= 1
Mh+o(h) if m=1
o(h) ifm> 1
1-Xh+o(h) if m=0

(c) if s<t then numbem (t)— N(s) of an emission

(b)

in the interval(s, t} is independent of the times of
emissions during0,s) .

It is obvious that inDefinition 9 the intensity
parameter X is a credibilistic fuzzy parameter
(credibilistic fuzzy variable, indeed). For a given

value of parametek =X,, N={N(t),t>0} is just
a probabilistic Poisson process. Howeverhifis a
fuzzy parameter, then for any given timgthe count
N(t)is a random fuzzy variable according to

Theorem 1 Therefore, Definition 9 defines a
stationary random fuzzy Poisson process.

Theorem 5 The successive inter-arrival (sojourn)
times in a random fuzzy Poisson process

N :{N(t),tz O} with credibilistic fuzzy intensity
X having a piecewise linear credibility distribution

0 x<a
x—a a<x<b
2(b—a)
A(x)= % b< x<c )
X+d-2c c<x<d
2(d—c)
1 x>d

are i.i.d. random fuzzy variables with common

gverage chance density:

e—at - e—bt bé bt aéat
t)=
O e T T
gt _ gt ce®_ det (10)
A9 2d_gt
Proof. Note that
P{T(})<t}=1-¢" (12)

Therefore event{&:Pr{T(A(@))gt}ZQ} is a

fuzzy event and is equivalent to the fuzzy event
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{9 : )\(9) >_1In (1—04)/’[}. As a critical toward the Table 3 Then the exponential random fuzzy lifetime

L o ... has an average chance distribution function:
derivation of the average chance distribution,sit i 9

necessary to calculate the credibility measure for ot ] crlo A (0)> —In(1 O
fuzzy event{@:)\(e)z—In(l—a)/t}, i.e., obtain ()_[ {0:2(6)2 ~In(1-a)/t}

: (14)
the expression for 1 e’ —e* N e"— e
2(b—a)t 2(d—ot
Cr{6:A(0) > —In(1-a)/t} (12)
and the average chance density is
Recall that for the credibilistic fuzzy variable, the b(0)= g _ ght . beb_ ae
credibility measure takes the form 2b—a)tt  2(b—at (15)
e—ct o e—dt CéCt* dédt
0 x<a T2d_gf " 2(d-gt
x—a a<x<b
2(b—a) _
1 This concludes the proof.
Cr{g:A(0)<x}=1= b<x<c (13) Similar to the probabilistic reliability theory, we
2 define a reliability function or survival functidor a
x+d-2c¢ c<x<d random fuzzy lifetime and accordingly name it as th
2(d—c) average chance reliability function, which is defin
1 x> d accordingly as
Accordingly, the range for integration withcan be T(t)=1-0(t) (16)
determined as shown imable 1 Recall that the
expression of X=—In (1—a)/t appears in  Then, for exponential random fuzzy lifetime, its
Equations (12) and (13), which facilitates the link average chance reliability function is
between intermediate variablex and average
chance measure. — . ed_gh gt_g®
U (t)= T + >4 (17)
Table 1 Range analysis fa (b—ajt  2(d—qt
X Q_and credibility measure expression Theorem 6The waiting time to then™ event,W,,
—oo<X=a| Range for(y O<as<l-e* in a random fuzzy Poisson  process
Cr{x(6)>—In(1-a)/t} |1 N ={N(t),t>0} with fuzzy intensityX\ having a
a<xs<b | Range for l-e¥<a<i-e” credibility distribution A has a average chance
Cr{A(0)>-In(1-a)/t} | 1-(x—a)/(2(b- &) distribution function:
b<x<c Range forQy l-eM<a<l-e*
Crix(0)>—In(1-a)/t 0.5 1 2
b)2n-a)f) . - ()= [|J1-A[F2Ee o (18)
c< ng Range forQx 1—e°'<a§l—ed' o 2t
cr{A(®)=-In(-a)ft} | (d-x)/(2(d-9)
d < x<+oo| Range for(y l-e"<a<1 Proof. Note that the waiting time for a fixed,
Cr{x(0)>-In(1-a)/t} |0 <>\t)n—l
follows a gamma density,, (t) Y =
The average chance distribution for the expondntial (n— )

distributed random fuzzy lifetime is then deriveg b Further note thaex W, ~ x3,, therefore event
splitting the integration into five terms accorditw

the range ofa and the corresponding mathematical

expression for  the credibility =~ measure

Cr{6:A(0)>—In(1-a)/t}, which is detailed in
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{9: Pr{Wn (9) < t} > u} will have a credibility distribution:
={0:Pr{2wW, (0)< 21t} >} 0 y<a
:{9 Pr{xgn f)< 2)([}204} y—a y<b
2 Z(b— a) o
= {e : >\(9) > Xania Am(t) (Y) - y+c—2b (23)
2t b<y<c
2(c—b)
Hence the average chance distribution 1 y>c
Wy (1) where
1
= | Cr(6:Pr{W,(0) <t} > )da (19) B
[ ( ) ) a=agt+at
:f 1-A Xania da et e
A t C=Gl+q

In general, the credibility distribution of the

If we specify the form of the credibility distriban _ _ _ _ .
integrated intensity functiam(t), it is necessary to

of A, then specific form of average chance

distribution should be obtained. apply Zadeh's [14] extension principle, denoted as

Ay, but for the piecewise linear credibility
3.3. Time-dependent random fuzzy Poisson distribution case, the mathematical arguments are
Processes simplier.

In reliability engineering and risk analysis, thenn Now let us derive the average chance distributarn f

stationary Poisson processes enjoy wide applicationthe inter-arrival times.
because the intensity function is time-dependend. |
expected that the mathematical treatments may be
much more complicated since the fuzzy functional
nature of intensity when the parameters are
credibilistic fuzzy variables. For a concrete
discussion purpose, we narrow our attention to aNote that for the first arrival time,
linear intensity function:

v, (t):]Cr(GZPr{T(G)gt}zu) da (25)

{o:Pr{T,(0)<t} >0

X(t)=B,+8t, B>0,8,> 0 (20) t
=10:1—exp— +3,u)dul >«
Further, we assume thag, and (3, both have { p[ [(60 ) l
piecewise linear credibility distribution: B {6 1 e u}
0 X< g ={0:m(t)>-In(1-a)}
ﬁ 31 < X< b
2(b—q) - _ Therefore, the average chance distributionTigrthe
A (x)= _ ,1=01(21) first inter-arrival time, is
X+ ¢ —2b
TS g <x<g
2(c—h)
w1
1 X>G 11
- f Cr(0:Pr{T(0) <t} > o) dox (26)
Then the integrated the intensity function (mean o
measure): 1
:fCr(e:m(t)z—In(l—u))du
m(t) = Bot +B,t (22) o
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Itis noticed thaty = —In(1—«), therefore, e
In (1 u)doc ( g™ _ e‘”“’)
1 y<a e (29)
D-2-y Ly ~m(b)e™ + nf 4 e"?
2(b—a)
Cr{m(t)> y}= y 27
b<y<c
2(c—b) e
0 >cC m(o _ gy
y> lefml (1-a)da=(e™—e"?) )
Table 2 Range analysis fam —m(c)e™ + nf b e™"
X & and credibility measure expression Combine above arguments, it is established that
—00<y<a| Range for(x 0<a<l-e™®
Cr{m(6)>—In(l—a)} 1 \I/Tl (t) —
a<y<b | Range forcy l-e"<a<l-e” 2b—a-1
-m(a) g gnib
cr{m(6)>—In(—a)} (2b—a—y)/(2(b- 4) 1-e +m(e —€ )
b<y<c Range for(x l-e<a<l-e* =+ 5 bl (—m( b) ém(b) + ITQ a éﬁ(a) (31)
cr{m(6)>—In(l—a)} (c—v)/(2(c— b) (b—a)
C< X<+oo| Range for(x 1-e d‘<a§l + c-1 (e*m(b)_e*”(‘))
cr{m()>—In@-a)} | o 2(c—b)
1 (9 b
Hence, +2(c—b)< m(c)e N nﬁ t) © )
1 . <th - . .

v (t):fCr(e:m(t)z—In(l— u))du Next let us derive the mter-asrtrlval time. Recall
' 0 that conditioning on the(i —1)" occurrence time
1e™d g My )

e e ob— a+t In(1— w_,, the mean measure is

= f Ixda+ f b za(—g n;) 0L)doc '

. ,Om( e 1 m<t| W—l) = Bo(t_ W—l) +Bl( - le;—l) (32)
- In(1—
iy RIS PN O .
i 2(b—a) i Accordingly, the credibility distribution for
¢ .
_1_ e —a (emi—em) m(tlw.) is
2(b—a)
L e 0 y<a
In(1—o)da y—
20— a)lef@ =) N 2(b—a) asy<b 23

e (efm(b) ") w7y o b<y<c .

2@_b) 2(c—b)
1 >cC
f In 1 OL y=
( —b) Lo
where
Note that
=& (t—w,)+a(f—w,)
Jn-a)da=(1-c)=(1-a)In(1-a)  (28)  b=fy(t—w,)+h(f— v, (34)
C:Q)<t_ W—l) - |71)

Hence
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Thus, the average chance distribution for tiffe  fuzzy variable { and random variable are not the

inter-arrival time is: same. It is expected that
vy (t)= {peo:X(0)<r}c{bco:(0)<r} (37)
1— g ™aw.) 2b—a-— 1( gmaw) g1t bwﬂ)
Z(b— a) but
1 - i}
+ —m(b| w_, em(uw,1)+ v, ghtaws) 35
2(b—a)( (bl ) 4 ) ) &9 Pr{iocO:X(6)<r} (38)
C—1 / mbwy) s mdw)
+2<C,b)(e € ) =cr{oco:¢(0)<r}
1 Sm(dw.) o)
+2((;_b)<’m(°| W) e+ ni g ow,) et ) The statistical estimation scheme for parameters

(a,b,c) of the credibility distribution based on fuzzy
It is necessary to emphas_ize _that in the gxpresa‘!on observations{xl, X2>$} can be stated as:
the average chance distribution of the inter-alsiva
(either Equation (31) for the first arrival, or Edion
(35) for thei™ arrival) the timet factor is containing
in the parametersa(b,§ as shown in Equation (24) obtain “order’ statistics {X(l)%z)""%n)} in
for the first arrival and Equation (34) for thé

arrival. Also, the functions for parametessh(,Q are , ~_ A
changed for the successive arrivals as indicated ir$(ep 2. Seta= X andc= Xn)»

Estimation Scheme 1
Step 1: Rank fuzzy observation§x,x,, -, x} to

ascending order;

Equation (34). Step 3: Set a tentative estimator fb,

. . A~ AX =Xy~
4. A parameter estimation scheme Y :w (39)
The parameter estimation is in nature an estimation h
problem of credibility distribution from fuzzy where
observations. Guo and Guo [8] recently proposed a _ _1< 40
maximally compatible random variable to a %= n< X (40)

credibilistic fuzzy variable and thus the fuzzy
estimation problem is converted into estimating theStep 4: Identify x,, from {X(l)%z)r"ﬂin)} such
distribution function of the maximally compatible
random variable. The following scheme is for
estimating the piecewise linear credibility {

that x| < h < X, and1<i, <i,, then we may see

x(l),)g(z),---,)%o)} as a set of order statistics from

distribution.
Definition 10 Let X be a random variable defined uniform [a,b]. Hence the “sufficient” statistic for
in (R,B(R)) such that parameteib is x, .

U =Croft = p=Po X" (36) Then (é, b, 6) :( Xy %) %)) is the parameter
Then X is called a maximally compatible to fuzzy estimator for the piecewise linear credibility
variable distribution.
£. 0 A

. X<a

In other words, random variab¥ecan take all the A

i ; X—a 4 a
possible real-values the fuzzy variabfe may take — asx<b
with and the distribution ofX , F,(r) equals the A(x)= 2(b— ) (a1)
credibility distribution of¢ , A (r) forall r OR. X+é—?b b< x< &
It is aware that the induced measufe Cro&™ and Z(C‘b)
measure;=Po X are defined on the same 1 x>0

measurable spad®,B(R)). Furthermore, we notice

that the pre-image™ (B) 19(©) , but, the pre-image The next issue is how to extract the information on
L intensity r in ionary random f Poisson
X (B)021(6) 05 (6), which implies that for the intensity ratex in stationary random fuzzy Poisso

process.
same Borel setBOB(R), the pre-images under

120



SSARS 2009
Summer Safety and Reliability Semindidy 19-25 2009 Gdaisk-Sopot, Poland

It is noticed that for probabilistic Poisson prages As to the fuzzy parameter simulation, we utilize th
case, the interpretation of intensitx is the maximally compatible random variable to a fuzzy
occurrence rate in unit time. Based on such arvariable concept and the inverse transformation of
observation, therefore, for any individual valng  the probability distribution function approach for
the fuzzy intensity may take, it results in a 9enerating fuzzy variable realizations. An algarith
probabilistic Poisson process. Sample this Poissoff Stated as follows:

process untiln, events and record the total waiting Fuzzy simulation scheme 1

timew, , then X,=n,/w, is an estimate of intensity Step 1. Simulating uniform random variable

. niform[0,1], an n h imple random
X,- Repeat the sampling procedure from the random:amople[SQu] amd }d.e ote the simple rando
fuzzy Poisson process as many times as possible et

say, m times, then the intensity “observation” Step 2: SetA(x) =y, (i=1,2,-.n);

sequence is Step 3: Setx, (i=1,2,,n):
{gpgz,...,gm}:1ﬁ,ﬁ,...,i} (42) [ at2(b-ay ifo<y<05 44
W, W g " Tlb-c+2(c-by if 05< y<1

Apply the Estimation Scheme tb the estimated rate 1.,

ROl N {x,%,,%}is a sample from the fuzzy
observations {X,,X,,+X,} the piecewise linear

variablef with a piecewise linear credibility
credibility distribution shown in Equation (41). distributionA .

For the non-stationary random fuzzy PoissonNext we state a random fuzzy Poisson process
process, the mean measure involves two lineagjmulation scheme.

piecewise credibility distributions for fuzzy gimulation scheme :2 Simulating a stationary
parameter g andp, respectively. random fuzzy Poisson process.

The scheme can state as follows: Step 1. Simulate a sequence of uniform(0,1),
Step 1. Sampling procedure from the random fuzzy denoted agu,u,, -y},

Poisson processi={N,t>0} m times. Let thei" Step 2 {77 1m,)

n, events the waiting time aréw, w,,-,w, } .

Step 2: For thei™ sample, perform the maximum 1 ,

L o P . 1, =—=In(1-u),i=12; 45
likelihood estimation and obtain the parameter pair T §] nA-u).i 4 (45)

(6;,6‘1) which is regarded as the fuzzy parameters

are the exponentially distributed random lifetime.
Step 3: in term ofFuzzy Simulation SchemeRuzzy
variable sampléx, x,,---, %} is obtained.

Step 3: Applying theEstimation Scheme tb fuzzy Step 4: {T,, T, T}

sequences {35} and {3,
respectively, the paramete(ﬁo,ﬁo,“co) and (51,61,”01) T :7i|n(1,q), i—12.-n (46)
Zi

define the two piecewise linear credibility
distributions forg, andg, respectively.

taking values. Repeat the estimation process alhtil
m MLE pairs {(@g,é‘l),i =12, m} are obtained.

which construct a stationary random fuzzy Poisson
processN ={N,t>0}.
As to the time-dependent random fuzzy Poisson
Simulation of a random fuzzy Poisson process isprocess, we state an algorithm to illustrate thesid
intrinsically two-stage procedure: a fuzzy paramete For example, we simulate a random fuzzy Poisson
simulation for generating realizations,x,-\,}  process with power law intensity function having a
from a piecewise linear credibility distribution fuzzy scale parameter.
function A and a waiting times sequence: Simulation scheme: Jimulating a time-depenedent

n random fuzzy Poisson waiting timée;,i=1,2; - n},

W,=>"T (43) .

— which forms a power law process. Note that the

conditional Weibull distribution

5. A simulation scheme

where T,,T,,---,T, are i.i.d. exponential with common
probability density functiome™ .
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¢ 8 8 Biometry Proschan, F. and Serfling, R. J. Eds.
F(tIx)=1—exg— [ﬂ] _[l(] (48) Philadelphia, Pennsylvania, SIAM.
n n [8] Grimmett, G. R. & Stirzaker, D. R. (1992).
Then Probability and Random ProcesseS$econd
Step 1: For given sample from Uniform(0,1), Edition. Clarendon Press, Oxford, London.

[4] Guo, R. & Love, C.E. (1992). Statistical
Analysis of An Age Model for Imperfectly
Repaired System.Quality and Reliability

[iwl] ]]w Engineering International, 133-146.
Inje "/ —In(1-y)|| , i=1,2;--,n(49) [5] Guo, R. & Love, C.E. (1994). Simulating

{uﬂuz,...’%} ,

W =n
Nonhomogeneous Poisson Processes with
Proportional Intensities. Naval Research

are waiting times in the random fuzzy Poisson _ Logistics 41, 507-522. _
process with power law. [6] Guo, R., & Love, C.E. (2004). Fuzzy Covariate

Step 2: As to the fuzzy scale parameieiin term of gogl?:”’}? apanlc,rglpg(r;e?(;m; 1I§epaired System.
. . . uality Assu , 7-15.
Fuzzy Simulation Scheme {x,x.-.x} is the (71 G0 R., Zhao, R.Q., Guo, D. & Dunne, T.

sample from the fuzzy scale parameter Finally, let (2007). Random Fuzzy Variable Modeling on
Repairable System.Journal of Uncertain
VL] i Systemsyol. 1, No.3, 222-234.
W = x|In im —In(l— U)J , i=1,2;--,n(50) [8] Guo, R., & Guo, D. (2009). Statistical
Simulating Fuzzy VariableProceedings of the

Nineth International Conference on Information

i ¢ q ¢ iti i and Management ScienceKunming, China,
Wi generate random fuzzy waiting times 2009 (under-review).

{Wi, W~ W} with fuzzy scale parameter, which 191 |ove, C.E. & Guo, R. (1991). Using
construct a random fuzzy Poisson process with  Proportional Hazard Modelling in Plant
power law intensity having a fuzzy scale parameter  Maintenance. Quality and Reliability
n. Engineering International7, 7-17.

[10]Love, C.E. & Guo, R. (1991). Application of
Weibull Proportional Hazards Modelling to Bad-
As-Old Failure Data.Quality and Reliability

In this paper, we give a systematic treatment of  Engineering International7, 149-157.

random fuzzy Poisson processes not only from thg11]Liu, B.D. (2004). Uncertainty Theory: An

stationary one and then non-stationary one, botals Introduction to Its Axiomatic Foundations.

parameter estimation scheme as well as a simulation  Berlin: Springer-Verlag Heidelberg.

scheme is proposed. In this way, the foundation foff12]Liu, B.D. (2007). Uncertainty Theory: An

the random fuzzy Poisson processes is formed Introduction to Its Axiomatic Foundationg™

6. Conclusion

although in its infant stage, particularly, the ¢im Edition; Berlin: Springer-Verlag Heidelberg.
dependent random fuzzy Poisson process. Th¢l3]Zadeh, L. A. (1965). Fuzzy settformation
applications to reliability engineering fields attte and Contro} 8, 338-353.

risk analysis now can extend from random [14]Zadeh, L. A., (1978). Fuzzy sets as a basis for a
uncertainty only cases to randomness and fuzziness theory of possibilityFuzzy Sets and Systerfis
co-existence cases. It is expecting that this  3-28.

development will help the reliability and risk

analysis researchers as well as reliability anslsgst

engineers.
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