Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Post-seismic assessments have indicated that the responses of masonry walls to seismic forces may be classified into two key categories: in-plane global mechanisms and out-of-plane cyclical actions occurring orthogonally to the wall. The initial phase of this investigation scrutinized the widely accepted shear strength models for in-plane shear resistance, Vn, of reinforced masonry (RM) walls. Subsequently, using a dataset comprising 78 samples of fully grouted hollow concrete block (HCB) RM walls, a detailed examination of the sensitivity of experimental shear strength, , to geometric, mechanical, and reinforcement characteristics of the wall was undertaken. The study's second phase entailed a parametric evaluation using finite element analysis to appraise the sensitivity of lateral drift to wall geometry and bed-joint reinforcement attributes. The third phase of the research introduced an informational model for estimating the lateral drift of partially grouted RM walls, incorporating BJ and vertical reinforcement. The model was established utilizing data from 44 full-scale in-plane cyclic tests on clay brick walls and 32 tests on HCB walls. The investigation further presented a multi-objective optimization methodology to ascertain the optimal vertical and BJR ratios, ρv and ρBJ. A graphical user interface and an accompanying empirical equation were also devised to simplify the analysis and design process for reinforced masonry walls, obviating the need for lengthy analyses. Increasing the BJR size from 6 to 8 mm resulted in a 30% increase in for specimens with six BJR rows, while increasing the number of BJR rows from six to ten led to 16% rise in , as demonstrated by numerical modeling validated against experimental tests.The findings of the study highlight a notable dependence of the lateral drift capacity of reinforced masonry walls on wall geometry and ρBJ ratio. These revelations provide invaluable insights for designing earthquake-resistant masonry edifices and formulating rehabilitation strategies for existing masonry structures deficient in seismic resilience.
Czasopismo
Rocznik
Tom
Strony
art. no. e2, 2024
Opis fizyczny
Bibliogr. 66 poz., rys., wykr.
Twórcy
autor
- Department of Building Construction and Structural Theory, South Ural State University, 76 pr. Lenina, Chelyabinsk, Russia 454080
autor
- Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4M6, Canada
autor
- Department of Mechanical Engineering, University Technology Malaysia, 81300 Johor Bahru, Malaysia
- Department of Building Construction and Structural Theory, South Ural State University, 76 pr. Lenina, Chelyabinsk, Russia 454080
Bibliografia
- 1. Hwang S-H, Kim S, Yang K-H. In-plane lateral load transfer capacity of unreinforced masonry walls considering presence of openings. J Build Eng. 2022;47:103868.
- 2. Tomazevic M, Velochovsky R. Some aspects of experimental testing of seismic behavior of masonry walls and models of masonry buildings. ISET J Earthq Technol. 2000;37(4):101–17.
- 3. Lüders C, Hidalgo P. Comportamiento sísmico de muros dealbañilería armada de ladrillos cerámicos. In: Primeras Jornadas Chilenas del Hormigón Estructural. 1982.
- 4. Diez J. Estudio experimental de muros de albañilería sometidos acarga lateral alternada. Memoria para optar al título de Ingeniero Civil. 1987.
- 5. Sierra G. Estudio experimental de la influencia de refuerzo vertical en muros de albañilería armada sometidos a carga lateral alternada. Santiago: Memoria para optar al título de Ingeniero Civil, Universidad de Chile; 2002.
- 6. Araya-Letelier G, et al. Fragility functions for partially-grouted masonry shear walls with bed-joint reinforcement. Eng Struct.2019;191:206–18.
- 7. Alcaino P, Santa-Maria H. Experimental response of externally retrofitted masonry walls subjected to shear loading. J Compos Constr. 2008;12(5):489–98.
- 8. Calderón S, Sandoval C, Arnau O. Shear response of partially-grouted reinforced masonry walls with a central opening: Testing and detailed micro-modelling. Mater Des. 2017;118:122–37.
- 9. Sveinsson B, Mayes R, McNiven H. Cyclic loading of masonry single piers (Rep. No. UCB/EERC-85/15). Volume 4. Additionaltest with height to width ratio of 1. 1985.
- 10. Hidalgo P. Desarrollo de las disposiciones de diseño para los edificios de albañilería armada en Chile. Anales de la Universidadde Chile. 1989.
- 11. Lüders C, Hidalgo P. Ductilidad y degradación de rigidez demuros de albañilería armada. In: XXIV Jornadas Sudamericanasde Ingeniería Estructural. Porto Alegre, Brasil. 1987.
- 12. Muñoz W. Estudio experimental del comportamiento de murosde albañilería de bloques de hormigón sometidos a carga lateral alternada. Civil Engineering, Thesis, Universidad de Chile. 1992.
- 13. Ramírez P, Sandoval C, Almazán JL. Experimental study on in-plane cyclic response of partially grouted reinforced concretemasonry shear walls. Eng Struct. 2016;126:598–617.
- 14. Piralla RM, Esteva L, Wolff AZ. Comportamiento de muros demampostería hueca ante carga lateral alternada. Mexico: Institutode Ingeniería, Universidad Nacional Autónoma de México; 1968.
- 15. Tomaževic M, et al. Seismic resistance of reinforced masonrywalls. In: Proceedings of the ninth world conference on earth-quake engineering. 1988.
- 16. Yancey C, Scribner C. Influence of horizontal reinforcement on shear resistance of concrete block masonry walls. NISTER.1989;89:4202.
- 17. Schultz AE, Hutchinson RS, Cheok GS. Seismic performance of masonry walls with bed joint reinforcement. 1998.
- 18. Haach VG, Vasconcelos G, Lourenço PB. Experimental analysis of reinforced concrete block masonry walls subjected to in-planecyclic loading. J Struct Eng. 2010;136(4):452–62.
- 19. Bolhassani M, Hamid A, Moon F. Enhancement of lateral in-planecapacity of partially grouted concrete masonry shear walls. Eng Struct. 2016;108:59–76.
- 20. Garcia-Ramonda L, et al. Experimental cyclic behaviour of shear masonry walls reinforced with single and double layered Steel Reinforced Grout. Constr Build Mater. 2022;320:126053.
- 21. Halici OF, et al. Out-of-plane seismic performance of bed-jointre in forced Autoclaved Aerated Concrete (AAC) infill walls damaged under cyclic in-plane displacement reversals. Eng Struct. 2023;286:116077.
- 22. Warjri T, Marbaniang DF, Marthong C. In-plane behaviour of masonry walls embedding with steel welded wire mesh overlay with mortar. J Struct Integr Maint. 2022;7(3):177–87.
- 23. Sveinsson B, McNiven H, Sucuoglu H. Cyclic loading tests of masonry single piers-Volume 4: additional tests with height to width ratio of 1. Earthquake Engineering Research Center, College of Engineering, University of California, Report No. UCB/ERRC-85/15, Berkeley, California. 1985.
- 24. Bolhassani M, et al. Simplified micro modeling of partially grouted masonry assemblages. Constr Build Mater.2015;83:159–73.
- 25. Sandoval C, Roca P. Study of the influence of different parameters on the buckling behaviour of masonry walls. Constr Build Mater. 2012;35:888–99.
- 26. Calderón S, et al. Influence of a window-type opening on the shea rresponse of partially-grouted masonry shear walls. Eng Struct. 2019;201:109783.
- 27. Code P. Eurocode 8: design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. Incorporating corrigendum. March 2010.
- 28. Lestuzzi P, Badoux M. Evaluation parasismique des constructions existantes: Bâtiments en maçonnerie et en béton arme. Lausanne: PPUR Presses polytechniques; 2013.
- 29. Standard B. Eurocode 6—design of masonry structures. London: British Standard Institution; 2005.
- 30. Zealand, S.A.o.N. Design of reinforced concrete masonry structures. New Zealand Standards Association (NZS) 4230: 2004.2004.
- 31. Design of Masonry Structures. Canadian Standards Association(CSA). 2004.
- 32. Code for design of masonry structure. C.A.B.P. China Ministryof Construction, Beijing, 2011. p. 193 (in Chinese). Editor. 2011, Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD).
- 33. Matsumura A. Shear strength of reinforced masonry walls. In: Proceedings of 9th World conference on earthquake engineering. Tokyo: Japan Association for Earthquake Disaster Prevention.1988.
- 34. Masonry Standards Joint Committee (MSJC) of the Masonry Society. Building code requirements and specification for masonry structures: c.b.c.r.f.m.s.T. 402–11/, s.f.m.s.T. ACI 530–11/ASCE5–11), and a.c.c.R.V. ACI 530.1-11/ASCE 6–11), Editors. American Society of Civil Engineers. 2011. p. 236.
- 35. Shing P, Schuller M, Hoskere V. In-plane resistance of reinforced masonry shear walls. J Struct Eng. 1990;116(3):619–40.
- 36. Matsumura A. Shear strength of reinforced hollow unit masonry walls. In: Proceedings of 4th North American Masonry conference. 1987.
- 37. Eikanas IK. Behavior of concrete masonry shear walls with varying aspect ratio and flexural reinforcement. Pullman: Washington State University; 2003.
- 38. Hidalgo P, et al. Cyclic loading tests of masonry single piers.EERC Rep. 1978;78:27–78.
- 39. Chen S, et al. Cyclic loading tests of masonry single piers, Volume2—height to width ratio of 1. Earthquake Engineering Research Center Report No. UCB/EERC-78/28, University of California, Berkeley, California, 1978.
- 40. Sveinsson B, Mc Niven H, Sucuoglu H. Cyclic loading tests of masonry single piers—Volume 4: additional tests with height to width ratio of 1. Berkeley: Earthquake Engineering Research Center, Univ. of California; 1985.
- 41. Voon K, Ingham J. Experimental in-plane shear strength investigation of reinforced concrete masonry walls. J Struct Eng.2006;132(3):400–8.
- 42. El-Dakhakhni WW, Banting BR, Miller SC. Seismic performance parameter quantification of shear-critical reinforced concrete masonry squat walls. J Struct Eng. 2013;139(6):957–73.
- 43. Quan C, Tang D. Experimental research on shear performance of reinforced masonry shear walls of high strength concrete blocks. J Build Struct. 2002;23(2):71–82.
- 44. Zhao Y, Wang F. Experimental studies on behavior of fully grouted reinforced-concrete masonry shear walls. Earthq Eng Eng Vib. 2015;14:743–57.
- 45. Goldaran R, Turer A. Application of acoustic emission for damage classification and assessment of corrosion in pre-stressed concrete pipes. Measurement. 2020;160:107855.
- 46. Gang W, Manafian J, Berna Benli F, İlhan OA, GoldaranR. Modulational instability and multiple rogue wave solutions for the generalized CBS–BK equation. Mod Phys Lett B.2021;35(24):2150408.
- 47. Calderón S, Milani G, Sandoval C. Simplified micro-modeling of partially-grouted reinforced masonry shear walls with bed-joint reinforcement: implementation and validation. Eng Struct.2021;234:111987.
- 48. Council AT, et al. Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. Federal Emergency Management Agency. 2007.
- 49. Li X-XL. Parametric study on numerical simulation of missile punching test using concrete damaged plasticity (CDP) model. Int J Impact Eng. 2020;144:103652.
- 50. Cheng H, et al. Experimentally based parameters applied to concrete damage plasticity model for strain hardening cementitious composite in sandwich pipes. Mater Struct. 2020;53:1–17.
- 51. Rainone LS, et al. About the use of concrete damage plasticity for modeling masonry post-elastic behavior. Buildings. 2023;13(8):1915.
- 52. Madkour H, Maher M, Ali O. Finite element analysis for interior slab-column connections reinforced with GFRP bars using damage plasticity model. J Build Eng. 2022;48:104013.
- 53. Lubliner J, et al. A plastic-damage model for concrete. Int J Solids Struct. 1989;25(3):299–326.
- 54. Lee J, Fenves GL. Plastic-damage model for cyclic loading of concrete structures. J Eng Mech. 1998; 124(8):892–900.
- 55. Zaimović-Uzunović N, Lemeš S. Metod konačnih elemenata. 2002. Dom štampe Zenica.
- 56. Kojic M, Bathe K-J. In elastic analysis of solids and structures, vol.2. Berlin: Springer; 2005.
- 57. Council BSS. Prestandard and commentary for the seismic rehabilitation of buildings. In: Report FEMA-356, Washington, DC.2000.
- 58. Prestandard F. Commentary for the seismic rehabilitation of buildings (FEMA356), vol 7, no 2. Federal Emergency Management Agency, Washington. 2000.
- 59. Petry S. Force-displacement response of unreinforced masonry walls for seismic design. Lausanne: EPFL; 2015.
- 60. Murcia-Delso J, Shing PB. Fragility analysis of reinforced masonry shear walls. Earthq Spectra. 2012;28(4):1523–47.
- 61. Sandoval C, Calderón S, Almazán JL. Experimental cyclic response assessment of partially grouted reinforced clay brick masonry walls. Bull Earthq Eng. 2018;16(7):3127–52.
- 62. Adeli H. Neural networks in civil engineering: 1989–2000. Comput Aided Civ Infrastruct Eng. 2001;16(2):126–42.
- 63. Flood I, Kartam N. Neural networks in civil engineering: I: principles and understanding. J Comput Civ Eng. 1994;8(2):131–48.
- 64. Nikoo M, et al. Determining the natural frequency of cantilever beams using ANN and heuristic search. Appl Artif Intell.2018;32(3):309–34.
- 65. Haykin S. Neural networks: a comprehensive foundation. Hoboken: Prentice-Hall Inc; 2007.
- 66. Bishop CM. Pattern recognition and machine learning. Berlin:Springer; 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-821696e1-51e3-4ed1-8f5e-95915721c617
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.