PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement accuracy verification of phasor measurement unit with dynamic phasor estimation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Power systems that are highly loaded, especially by a stochastic supply of renew- ables and the presence of storages, require dynamic measurements for their optimal control. Phasor measurement units (PMUs) can be used to capture electrical parameters of a power system. Standards on the PMU dynamic performance have been modified to incorporate their new dynamic mode of operation. This paper examines the PMU dynamic performance and proposes essential algorithms for measurement accuracy verification. Measurements of dynamic input signals, which vary in amplitude or frequency, were taken during au- tomated tests of two PMUs. The test results are presented and expounded with further recommendation for the performance requirements. This paper also presents and examines applied testing procedures with relevance to the specifications of the IEEE Standard for Synchrophasor C37.118.1™-2011 and its amendment C37.118.1a™-2014.
Rocznik
Strony
529--–543
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
  • Fraunhofer Institute for Factory Operation and Automation Sandtorstrasse 22, 39106 Magdeburg, Germany
autor
  • GridLab GmbH Mittelstrasse 7, 12529 Schoenefeld, Germany
autor
  • Fraunhofer Institute for Factory Operation and Automation Sandtorstrasse 22, 39106 Magdeburg, Germany
  • Fraunhofer Institute for Factory Operation and Automation Sandtorstrasse 22, 39106 Magdeburg, Germany
Bibliografia
  • [1] Buchholz B.M., Styczynski Z., Smart grids – Fundamentals and technologies in electricity networks, Springer (2014).
  • [2] Styczynski Z., Stoetzer M., Mueller G., Komarnicki P., Belmans R., Driesen J., Hansen A.B., Pecas Lopes J., HatziargyriouN., Challenges and barriers of integrating e-cars into a grid with high amount of renewable generation, 44th International Conference on Large High Voltage Electric Systems (2012).
  • [3] Powalko M., Rudion K., Komarnicki P., Blumschein J., Observability of the distribution system, IET Conference Publications (2009).
  • [4] Phadke A.G., Thorp J.S., Synchronized Phasor Measurements and Their Applications, New York, Springer (2008).
  • [5] Wang X., Bialek J., Turitsyn K., PMU-Based Estimation of Dynamic State Jacobian Matrix and Dynamic System State Matrix in Ambient Conditions, IEEE Transactions on Power Systems, DOI 10.1109/TPWRS.2017.2712762.
  • [6] Ren J., Synchrophasor measurement using substation intelligent electronic devices: algorithms and test methodology, PhD Thesis, Office of Graduate Studies, Texas A&M University (2011).
  • [7] Richter M., PMU-basierte Zustandsabschätzung in Smart Distribution, PhD Thesis, EIT Faculty, Otto von Guericke University Magdeburg (2016).
  • [8] Al-Mahammed A.H., Abido M.A., An adaptive fault location algorithm for power system networks based on synchrophasor measurements, Electric Power SystemResearch, vol. 108, pp. 153–163 (2014).
  • [9] Du Y., Liao Y., On-line estimation of transmission line parameters, temperature and sag using PMU measurements, Electric Power Systems Research, vol. 93, pp. 39–45 (2012).
  • [10] Guo Y., Wu W., Zhang B., Sun H., A distributed state estimation method for power systems incorporating linear and nonlinear models, International Journal of Electrical Power and Energy Systems, 64, pp. 608–616 (2015).
  • [11] Kashyap N., Werner S., Huang Y.-F., Riihonen T., Power system state estimation under incomplete PMUobservability – A reduced-order approach, IEEE Journal on Selected Topics in Signal Processing, vol. 8, no. 6, art. 6845308, pp. 1051–1062 (2014).
  • [12] Yuill W., Edwards A., Chowdhury S., Chowdhury S.P., Optimal PMU placement: A comprehensive literature review, IEEE Power and Energy Society General Meeting, art. 6039376 (2011).
  • [13] Mueller G., Komarnicki P., Golub I., Styczynski Z., Dzienis C., Blumschein J., PMU placement method based on decoupled newton power flow and sensitivity analysis, 9th International Conference on Electrical Power Quality and Utilisation, art. 4424116 (2007).
  • [14] Chen C.,Wang J., Zhu H., Effects of phasor measurement uncertainty on power line outage detection, IEEE Journal on Selected Topics in Signal Processing, vol. 8, no. 6, art. 6846291, pp. 1127–1139 (2014).
  • [15] Komarnicki P., Dzienis C., Styczynski Z.A., Blumschein J., Centeno V., Practical experience with PMU system testing and calibration requirements, IEEE Power and Energy Society 2008 General Meeting, PES, art. 4596629 (2008).
  • [16] Ren J., Kezunovic M., Stenbakken G., Characterizing dynamic behavior of PMUs using step signals, European Transactions on Electrical Power, 21 (4), pp. 1496–1508 (2011).
  • [17] IEEE Standard for Synchrophasor Measurements for Power Systems, (IEEE Std C37.118.1TM-2011, revision of IEEE Std C37.118TM-2005), December 2011.
  • [18] IEEE Standard for Synchrophasor Measurements for Power Systems (IEEE Std C37.118.1a™- 2014 Amendment 1: Modification of Selected Performance Requirements, amendment to IEEE Std C37.118.1TM-2011), March 2014.
  • [19] Heuer J., Komarnicki P., Styczynski Z.A., Integration of electrical vehicles into the smart grid in the Harz.EE-mobility research project, IEEE Power and Energy Society General Meeting, art. no. 6039147 (2011).
  • [20] Naumann A., Bielchev I., Voropai N., Styczynski Z., Smart grid automation using IEC 61850 and CIM standards, Control Engineering Practice, 25 (1), pp. 102–111 (2014).
  • [21] IEEE Standard for Synchrophasor Data Transfer for Power systems (IEEE Std C37.118.2™– 2011, revision of IEEE Std C37.118™-2005), December 2011.
  • [22] de la O Serna J.A., Dynamic Phasor Estimates for Power System Oscillations, IEEE Transaction on Instrumentation and Measurement, vol. 56, no. 5, 1648–1657 (2007).
  • [23] Platas-Garza M.A., de la O Serna J.A., Dynamic Phasor and Frequency Estimates Through Maximally Flat Differentiators, IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 7, pp. 1803–1811, July (2010).
  • [24] de la O Serna J.A., Platas-Garza M.A., Maximally flat differentiators through WLS Taylor decomposition, Digital Signal Processing, vol. 21, Issue 2, pp. 183–194, March (2011).
  • [25] Nanda S., Dash P.K., A Gauss-Newton ADALINE for a Dynamic Phasor Estimation of Power Signals and Its FPGA Implementation, IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 1, pp. 45–56, January (2018).
  • [26] Huang Ch., Xie X., Jiang H., Dynamic Phasor Estimation Through DSTKF Under Transient Conditions, IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 11, pp. 2929–2936, November (2017).
  • [27] Rabe S., Komarnicki P., Styczynski Z.A., Gurbiel M., Blumschein J., Kereit M., Voropai N., Automated Test Procedures for Accuracy Verification of Phasor Measurement Units, 978-1-4673-2729-9/12, IEEE (2012).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-821578be-743b-4a0e-b38d-1b6908dcc1ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.