PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Characterization of optical and electrical properties of transparent conductive boron-doped diamond thin films grown on fused silica

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abstract A conductive boron-doped diamond (BDD) grown on a fused silica/quartz has been investigated. Diamond thin films were deposited by the microwave plasma enhanced chemical vapor deposition (MW PECVD). The main parameters of the BDD synthesis, i.e. the methane admixture and the substrate temperature were investigated in detail. Preliminary studies of optical properties were performed to qualify an optimal CVD synthesis and film parameters for optical sensing applications. The SEM micro-images showed the homogenous, continuous and polycrystalline surface morphology; the mean grain size was within the range of 100-250 nm. The fabricated conductive boron-doped diamond thin films displayed the resistivity below 500 mOhm cm-1 and the transmittance over 50% in the VIS-NIR wavelength range. The studies of optical constants were performed using the spectroscopic ellipsometry for the wavelength range between 260 and 820 nm. A detailed error analysis of the ellipsometric system and optical modelling estimation has been provided. The refractive index values at the 550 nm wavelength were high and varied between 2.24 and 2.35 depending on the percentage content of methane and the temperature of deposition.
Rocznik
Strony
685--698
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr., wzory
Twórcy
  • Dept. of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdansk, Poland
Bibliografia
  • [1] Wort, C. J. H., & Balmer, R. S. (2008). Diamond as an electronic material. Materials Today, 11(1-2), 22-28.
  • [2] Suzuki, M., Koizumi, S., Katagiri, M., Yoshida, H., Sakuma, N., Ono, T., & Sakai, T. (2004). Electrical characterization of phosphorus-doped n-type homoepitaxial diamond layers. Diamond and Related Materials, 13(11-12), 2037-2040.
  • [3] Isberg, J., Hammersberg, J., Johansson, E., Wikstrom, T., Twitchen, D. J., Whitehead, A. J., Scarsbrook, G. A. (2002). High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond. Science, 297(5587), 1670-1672.
  • [4] Adamschik, M., Kusterer, J., Schmid, P., Schad, K. B., Grobe, D., Floter, A., & Kohn, E. (2002). Diamond microwave micro relay. Diamond and Related Materials, 11(3-6), 672-676.
  • [5] Petržela, J., Vyskočil, P., & Prokopec, J. (2010). Fundamental oscillators based on diamond transistors. In Radioelektronika (RADIOELEKTRONIKA), 2010. 20th International Conference, 1-4. Presented at the Radioelektronika (RADIOELEKTRONIKA), 2010 20th International Conference.
  • [6] Iniesta, J., Michaud, P. A., Panizza1, M., Cerisola1, G., Aldaz1, A., & Comninellis, C. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573-3578.
  • [7] Panizza, M., Michaud, P. A., Cerisola, G., & Comninellis, C. (2001). Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: Prediction of specific energy consumption and required electrode area. Electrochemistry Communications, 3(7), 336-339.
  • [8] Brillas, E., Boye, B., Sires, I., Garrido, J. A., Rodrı́guez, R. M., Arias, C., … Comninellis, C. (2004). Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochimica Acta, 49(25), 4487-4496.
  • [9] Stotter, J., Zak, J., Behler, Z., Show, Y., & Swain, G. M. (2002). Optical and Electrochemical Properties of Optically Transparent, Boron-Doped Diamond Thin Films Deposited on Quartz. Analytical Chemistry, 74(23), 5924-5930.
  • [10] Bogdanowicz, R., Czupryniak, J., Gnyba, M., Ryl, J., Ossowski, T., Sobaszek, M., Darowicki, K. (2013). Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond. Sensors and Actuators B: Chemical, 189, 30-36.
  • [11] Bogdanowicz, R. (2013). Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes. Diamond and Related Materials, (39), 82-88.
  • [12] Nebel, C. E., Rezek, B., Shin, D., Uetsuka, H., & Yang, N. (2007). Diamond for bio-sensor applications. Journal of Physics D: Applied Physics, 40(20), 6443.
  • [13] Weng, J., Zhang, J., Li, H., Sun, L., Lin, C., & Zhang, Q. (2008). Label-Free DNA Sensor by Boron-Doped Diamond Electrode Using an ac Impedimetric Approach. Analytical Chemistry, 80(18), 7075-7083.
  • [14] Trouillon, R., & O’Hare, D. (2010). Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling. Electrochimica Acta, 55(22), 6586-6595.
  • [15] Weng, J., Zhang, J., Li, H., Sun, L., Lin, C., & Zhang, Q. (2008). Label-Free DNA Sensor by Boron-Doped Diamond Electrode Using an ac Impedimetric Approach. Analytical Chemistry, 80(18), 7075-7083.
  • [16] Bogdanowicz, R., Śmietana, M., Gnyba, M., Ficek, M., Straňak, V., Goluński, Ł., Ryl, J. (2013). Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer. physica status solidi (a), 210(10), 1991-1997.
  • [17] Smietana, M., Szmidt, J., Dudek, M., & Niedzielski, P. (2004). Optical properties of diamond-like cladding for optical fibres. Diamond and Related Materials, 13(4-8), 954-957.
  • [18] Remes, Z. (2010). High optical quality nanocrystalline diamond with reduced non-diamond contamination. Diamond and Related Materials, (19), 453-456.
  • [19] Kromka, A., Rezek, B., Remes, Z., Michalka, M., Ledinsky, M., Zemek, J., Vanecek, M. (2008). Formation of Continuous Nanocrystalline Diamond Layers on Glass and Silicon at Low Temperatures. Chemical Vapor Deposition, 14(7-8), 181-186.
  • [20] Potocky, S., Kromka, A., Potmesil, J., Remes, Z., Vorlicek, V., Vanecek, M., & Michalka, M. (2007). Investigation of nanocrystalline diamond films grown on silicon and glass at substrate temperature below 400 °C. Diamond and Related Materials, 16, (4-7), 744-747.
  • [21] Hu, Z. G., & Hess, P. (2006). Optical constants and thermo-optic coefficients of nanocrystalline diamond films at 30-500 °C. Applied Physics Letters, 89(8), 081906-081906-3.
  • [22] Hu, Z. G., Prunici, P., Hess, P., & Chen, K. H. (2007). Optical properties of nanocrystalline diamond films from mid-infrared to ultraviolet using reflectometry and ellipsometry. Journal of Materials Science: Materials in Electronics, 18(1), 37-41.
  • [23] Gupta, S., Dudipala, A., Williams, O. A., Haenen, K., & Bohannan, E. (2008). Ex situ variable angle spectroscopic ellipsometry studies on chemical vapor deposited boron-doped diamond films: Layered structure and modeling aspects. Journal of Applied Physics, 104(7), 073514.
  • [24] Gajewski, W., Achatz, P., Williams, O. A., Haenen, K., Bustarret, E., Stutzmann, M., & Garrido, J. A. (2009). Electronic and optical properties of boron-doped nanocrystalline diamond films. Physical Review B, 79(4), 045206.
  • [25] Zimmer, A., Williams, O. A., Haenen, K., & Terryn, H. (2008). Optical properties of heavily boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry. Applied Physics Letters, 93(13), 131910-131910-3.
  • [26] Bogdanowicz, R., Śmietana, M., Gnyba, M., Ficek, M., Straňak, V., Goluński, Ł., Ryl, J. (2013). Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer. physica status solidi (a), 210(10), 1991-1997.
  • [27] Smietana, M., Szmidt, J., Dudek, M., & Niedzielski, P. (2004). Optical properties of diamond-like cladding for optical fibres. Diamond and Related Materials, 13(4-8), 954-957.
  • [28] Daenen, M., Williams, O. A., D’Haen, J., Haenen, K., & Nesladek, M. (2006). Seeding, growth and characterization of nanocrystalline diamond films on various substrates. physica status solidi (a), 203(12), 3005-3010.
  • [29] Stotter, J., Show, Y., Wang, S., & Swain, G. (2005). Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes. Chemistry of Materials, 17(19), 4880-4888.
  • [30] Stotter, J., Zak, J., Behler, Z., Show, Y., & Swain, G. M. (2002). Optical and Electrochemical Properties of Optically Transparent, Boron-Doped Diamond Thin Films Deposited on Quartz. Analytical Chemistry, 74(23), 5924-5930.
  • [31] Kromka, A., Rezek, B., Kalbacova, M., Baresova, V., Zemek, J., Konak, C., & Vanecek, M. (2009). Diamond Seeding and Growth of Hierarchically Structured Films for Tissue Engineering. Advanced Engineering Materials, 11(7), B71-B76.
  • [32] Shenderova, O., Hens, S., & McGuire, G. (2010). Seeding slurries based on detonation nanodiamond in DMSO. Diamond and Related Materials, 19(2-3), 260-267.
  • [33] Bogdanowicz, R., Gnyba, M., & Wroczyński, P. (2006). Optoelectronic monitoring of plasma discharge optimized for thin diamond film synthesis. Journal de Physique IV (Proceedings), 137, 57-60.
  • [34] Bogdanowicz, R., Gnyba, M., Wroczynski, P., & Kosmowski, B. B. (n.d.). Optoelectronic system for monitoring of thin diamond layers growth. Journal of optoelectronics and advanced materials, 12(8), 1660-1665. Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=23110414
  • [35] Bogdanowicz, R. (2008). Investigation of H2:CH4 Plasma Composition by Means of Spatially Resolved Optical Spectroscopy. Acta Phys. Pol., A33-A38.
  • [36] Kraszewski, M., & Bogdanowicz, R. (2013). Laser Reflectance Interferometry System with a 405 Nm Laser Diode for in Situ Measurements of CVD Diamond Thickness. Metrology and Measurement Systems, 20(4), 543-554.
  • [37] Sze, S. M., & Ng, K. K. (2006). Physics of Semiconductor Devices. John Wiley & Sons.
  • [38] Tompkins, H., & Irene, E. A. (2005). Handbook of Ellipsometry. William Andrew.
  • [39] Khardani, M., Bouaicha, M., & Bessais, B. (2007). Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment. physica status solidi (c), 4(6), 1986-1990.
  • [40] Palik, E. D. (Ed.). (1991). Handbook of Optical Constants of Solids, 2 (1st ed.). Academic Press.
  • [41] Palik, E. D. (1998). Handbook of Optical Constants of Solids. Academic Press.
  • [42] Gioti, M., Papadimitriou, D., & Logothetidis, S. (2000). Optical properties and new vibrational modes in carbon films. Diamond and Related Materials, 9(3-6), 741-745.
  • [43] Logothetidis, S., Gioti, M., Patsalas, P., & Charitidis, C. (1999). Insights on the deposition mechanism of sputtered amorphous carbon films. Carbon, 37(5), 765-769.
  • [44] Jellison Jr., G. E., Merkulov, V. I., Puretzky, A. A., Geohegan, D. B., Eres, G., Lowndes, D. H., Caughman, J. B. (2000). Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry. Thin Solid Films, 377-378, 68-73.
  • [45] Majumdar, A., Schafer, J., Mishra, P., Ghose, D., Meichsner, J., & Hippler, R. (2007). Chemical composition and bond structure of carbon-nitride films deposited by CH4/N2 dielectric barrier discharge. Surface and Coatings Technology, 201(14), 6437-6444.
  • [46] Gioti, M., Logothetidis, S. (2003). Dielectric function, electronic properties and optical constants of amorphous carbon and carbon nitride films. Diamond and Related Materials, 12(3-7), 957-962.
  • [47] Jellison, G. E., J., & Modine, F. A. (1996). Parameterization of the optical functions of amorphous materials in the interband region. Applied Physics Letters, 69(3), 371-373.
  • [48] Tompkins, H., & Irene, E. A. (2005). Handbook of Ellipsometry. William Andrew.
  • [49] Gicquel, A., Hassouni, K., Silva, F., & Achard, J. (2001). CVD diamond films: from growth to applications. Current Applied Physics, 1(6), 479-496.
  • [50] Lagrange, J.-P., Deneuville, A., & Gheeraert, E. (1999). A large range of boron doping with low compensation ratio for homoepitaxial diamond films. Carbon, 37(5), 807-810.
  • [51] Werner, M., Job, R., Zaitzev, A., Fahrner, W. R., Seifert, W., Johnston, C., Chalker, P. R. (1996). The Relationship between Resistivity and Boron Doping Concentration of Single and Polycrystalline Diamond. physica status solidi (a), 154(1), 385-393.
  • [52] Nesladek, M., Tromson, D., Mer, C., Bergonzo, P., Hubik, P., & Mares, J. J. (2006). Superconductive Bdoped nanocrystalline diamond thin films: Electrical transport and Raman spectra. Applied Physics Letters, 88(23), 232111.
  • [53] May, P. W., Ludlow, W. J., Hannaway, M., Heard, P. J., Smith, J. A., & Rosser, K. N. (2008). Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films. Diamond and Related Materials, 17(2), 105-117.
  • [54] Lewkowicz, A., Synak, A., Grobelna, B., Bojarski, P., Bogdanowicz, R., Karczewski, J., Behrendt, M. (2014). Thickness and structure change of titanium(IV) oxide thin films synthesized by the sol-gel spin coating method. Optical Materials, 36(10), 1739-1744.
  • [55] Lee, H., Kim, I.-Y., Han, S.-S., Bae, B.-S., Choi, M. K., & Yang, I.-S. (2001). Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films. Journal of Applied Physics, 90(2), 813-818.
  • [56] Hu, Z. G., Prunici, P., Hess, P., & Chen, K. H. (2007). Optical properties of nanocrystalline diamond films from mid-infrared to ultraviolet using reflectometry and ellipsometry. Journal of Materials Science: Materials in Electronics, 18(1), 37-41.
  • [57] Taylor, A., Fekete, L., Hubik, P., Jager, A., Janiček, P., Mortet, V., … Vacik, J. (2014). Large area deposition of boron doped nano-crystalline diamond films at low temperatures using microwave plasma enhanced chemical vapour deposition with linear antenna delivery. Diamond and Related Materials, 47, 27-34.
  • [58] Zimmer, A., Williams, O. A., Haenen, K., Terryn, H. (2008). Optical properties of heavily boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry. Applied Physics Letters, 93(13), 131910-131910-3.
  • [59] Lee, S.-T., Lin, Z., Jiang, X. (1999). CVD diamond films: nucleation and growth. Materials Science and Engineering: R: Reports, 25(4), 123-154.
  • [60] Asmussen, J., Reinhard, D. (2002). Diamond Films Handbook. CRC Press.
  • [61] Turner, S., Lu, Y.-G., Janssens, S. D., Pieve, F. D., Lamoen, D., Verbeeck, J., Tendeloo, G. V. (2012). Local boron environment in B-doped nanocrystalline diamond films. Nanoscale, 4(19), 5960-5964.
  • [62] Stoner, B. r., Williams, B. e., Wolter, S. d., Nishimura, K., Glass, J. t. (1992). In situ growth rate measurement and nucleation enhancement for microwave plasma CVD of diamond. Journal of Materials Research, 7(02), 257-260.
  • [63] Arregui, F. J. (2010). Sensors Based on Nanostructured Materials. Springer.
Uwagi
EN
This work was supported by the Polish National Science Centre (NCN) under the grant No. 2011/03/D/ST7/03541. The DS funds of the Faculty of Electronics, Telecommunications and Informatics at the Gdansk University of Technology are also acknowledged.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-820f8b9d-1015-4d0b-a41e-dabd268ef2e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.