PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The study of the connection between the zirconia substructure and veneering porcelain in dental crowns subjected to occlusal forces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study was to examine the connection between the zirconia substructure and the porcelain in the dental crowns subjected to simulated occlusal forces. Design/methodology/approach: All-ceramic dental crowns were subjected to Vickers hardness examination, testing of compressive strength and observations of breakthroughs on the SEM. Findings: Based on the research, it was found that the compressive force at which ceramic crowns brake down, are in the range of maximum occlusal loads exerted by man. There is a mechanical connection between zirconia and porcelain. All-ceramic crowns of premolars showed the highest resistance to compressive force, while the crowns of canines are characterized by the lowest resistance to the loading force. In addition, through the research we found that ceramic crowns under static compressive loads brake down and the fracture line runs through the entire thickness of the wall, because zirconium oxide has more than twice the hardness of the porcelain. There is a difference of stresses between the materials, causing fracture of the restoration. Practical implications: The research work shows that the porcelain crowns on the substructure of zirconia (all-ceramic restoration) are a very good option of the restorative treatment in dentistry, rebuilding missing teeth. Originality/value: The article presents a study on the compressive strength of manufactured crowns, followed by a comparison to the natural forces of occlussion in human. The exact mapped tooth geometry and the appropriate veneering porcelain foundation of zirconium allows the use of prosthetic crowns in the patient's mouth without fear that porcelain will be broken.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • piotr.malara@pols.pl
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] E. Spiechowicz, Prosthetics - textbook for students of Dentistry, Medical Publishing PZWL, Warsaw, 2008.
  • [2] P. Stendera, P. Grochowski, Ł. Łomyński, The use of zirconium oxide in dental prosthetics, Prosthetics LXII 2 (2012) 115-120.
  • [3] H. Panek, New technologies in dental prosthetics, Academy of Medical Sciences. Wroclaw Medical University Department of Prosthodontics, Wroclaw, 2006.
  • [4] K. Subotowicz, Ceramics for everyone, Elamed, Katowice, 2008.
  • [5] M. Gołębiowski, M. Stępczyński, M. Wojciechowska, Ceramic bridges on the foundation of zirconia as an aesthetic alternative to metal-ceramic bridges, Prosthodontics LX 2 (2010) 133-137.
  • [6] N. Moskała, Doctoral thesis-Research into composites granular zirconia with inclusions TiB2, AGH im. S. Staszica, Krakow, 2010.
  • [7] K. Lasek, P. Okoński, E. Mierzwińska-Nastalska, Zirconium oxide-physical and clinical application, Prosthodontics LIX 6 (2009) 415-422.
  • [8] J.M. Powers, J.C. Wataha, Dental materials, Elsevier Urban&Partner, Wroclaw, 2013.
  • [9] H. Zahnfabrik, Working Instructions Vita VM9, Rauter GmbH & Co.KG.
  • [10] Z. Dyląg, A. Jakubowicz, Z. Orłoś, Strength of Materials-Volume I, WNT, Warsaw, 2012.
  • [11] K. Przybyłowicz, Materials in questions and answers, Publisher WNT, Warsaw, 2004.
  • [12] P. Malara, L.B. Dobrzański, Computer-aided design and manufacturing of dental surgical guides based on cone beam computed tomography, Archives of Materials Science and Engineering 76/2 (2015) 140- 149.
  • [13] P. Malara, L.B. Dobrzański, Designing and manufacturing of implanto-prosthetic fixed suprastructures in edentulous patients on the basis of Digital impressions, Archives of Materials Science and Engineering 76/2 (2015) 163-171.
  • [14] P. Malara, Z. Czech, W. Świderski, Influence of the light source and curing parameters on microhardnes of a silorane-based dental composite material, Archives of Metallurgy and Materials 61/3 (2016) 985-990.
  • [15] G. Chladek, K. Basa, J. Żmudzki, P. Malara, A. Nowak, J. Kasperski, Influence of aging solutions on wear resistance and hardness of selected resin-based dental composites, Acta of Bioengineering and Biomechanics 18/3 (2016) 1-16.
  • [16] J. Żmudzki, P. Malara, G. Chladek, Full contoured tooth-implant supported 3-pointic all-ceramic denture during occlusal load transfer in lateral region, Archives of Metallurgy and Materials 61/2A (2016) 843-846.
  • [17] L.A. Dobrzański, A. Dobrzańska-Danikiewicz, P. Malara, T. Gaweł, L.B. Dobrzański, A. Achtelik-Franczak, Fabrication of scaffolds from Ti6Al4V powders using the computer aided laser method, Archives of Metallurgy and Materials 60/2A (2015) 1065-1070.
  • [18] W. Świderski, Z. Czech, P. Malara, Of compressive strength of dental fillings photoreactive curable with visible light. Chemical Industry 93/12 (2014) 2214- 2217.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-820d406f-f83a-4cd5-ba09-64c52f98e6bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.