PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modeling the Geometry of an Underwater Channel for Acoustic Communication

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The achievement of efficient data transmissions via underwater acoustic channels, while dealing with large data packets and real-time data fed by underwater sensors, requires a high data rate. However, diffraction, refraction, and reflection phenomena, as well as phase and amplitude variations, are common problems experienced in underwater acoustic (UWA) channels. These factors make it difficult to achieve high-speed and long-range underwater acoustic communications. Due to multipath interference caused by surface and ocean floor reflections, the process of modeling acoustic channels under the water’s surface is of key importance. This work proposes a simple geometry-based channel model for underwater communication. The impact that varying numbers of reflections, low water depth values, and distances between the transmitter and the receiver exert on channel impulse response and transmission loss is examined. The high degree of similarity between numerical simulations and actual results demonstrates that the proposed model is suitable for describing shallow underwater acoustic communication environments.
Rocznik
Tom
Strony
3--12
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • College of Information Engineering. Al-Nahrain University, Iraq
  • College of Engineering. University of Wasit, Iraq
  • College of Information Engineering. Al-Nahrain University, Iraq
Bibliografia
  • [1] M. Stojanovic and J. Preisig, “Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization”, IEEE Commun. Mag., vol. 47, no. 1, pp. 84–89, 2009 (DOI: 10.1109/MCOM.2009.4752682).
  • [2] A. E. Abdelkareem, B.S. Sharif, C.C. Tsimenidis, and J.A. Neasham, “Time Varying Doppler-Shift Compensation for OFDM-Based Shallow Underwater Acoustic Communication Systems”, 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, 2011, pp. 885–891 (DOI: 10.1109/MASS.2011.105).
  • [3] B.J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor networks: applications, advances and challenges”, Trans. R. Soc. A, vol. 370, pp. 158–175, 2012 (DOI: 10.1098/rsta.2011.0214).
  • [4] J. Hui and X. Sheng, “Reverberation Channel”, Underwater Acoustic Channel, Singapore: Springer Nature Singapore, 2022, pp. 175–191 (DOI: 10.1007/978-981-19-0774-6).
  • [5] R.F. Coates, “Underwater acoustic communication”, Sea Technol., vol. 35, no. 7, pp. 41–47, 1994 (URL: https://archive.org/details /sim_sea-technology_1994-07_35_7/page/n3/mode/2up).
  • [6] M. Elamassie, F. Miramirkhani, and M. Uysal, “Channel modeling and performance characterization of underwater visible light communications”, 2018 IEEE Int. Conf. Commun. Work. ICC Work, 2018 – Proc., pp. 1–5, 2018 (DOI: 10.1109/ICCW.2018.8403731).
  • [7] Y. Widiarti, Suwadi, Wirawan, and T. Suryani, “A Geometry-Based Underwater Acoustic Channel Model for Time Reversal Acoustic Communication”, Proceeding – 2018 Int. Semin. Intell. Technol. Its Appl. ISITIA 2018, pp. 345–350, 2018 (DOI: 10.1109/ISITIA.2018.8711067).
  • [8] J. Zhou, H. Jiang, P. Wu, and Q. Chen, “Study of Propagation Channel Characteristics for Underwater Acoustic Communication Environments”, IEEE Access, vol. 7, pp. 79438–79445, 2019 (DOI: 10.1109/ACCESS.2019.2921808).
  • [9] M. Rawat, B. Lall, and S. Srirangarajan, “Angle of Arrival Distribution in an Underwater Acoustic Communication Channel with Incoherent Scattering”, IEEE Access, vol. 8, pp. 133204–133211, 2020 (DOI: 10.1109/ACCESS.2020.3008602).
  • [10] X. Zhu, C. X. Wang, and R. Ma, “A 2D Non-Stationary Channel Model for Underwater Acoustic Communication Systems”, IEEE Veh. Technol. Conf., vol. 2021-April, pp. 0–5, 2021 (DOI: 10.1109/VTC2021- Spring51267.2021.9448976).
  • [11] A.E. Abdelkareem, B.S. Sharif, and C. C. Tsimenidis, “Adaptive time varying Doppler shift compensation algorithm for OFDM-based underwater acoustic communication systems”, Ad Hoc Networks, vol. 45, pp. 104–119, 2016 (DOI: 10.1016/j.adhoc.2015.05.011).
  • [12] Y. Lou and N. Ahmed, “Basic Principles of Underwater Acoustic Communication”, Underwater Communications and Networks, Cham: Springer International Publishing, pp. 3–33, 2022 (DOI: 10.1007/978-3-030-86649-5_1).
  • [13] R.F. W. Coates, “Underwater Acoustic Systems”, Wiley, 1990 (ISBN: 9780470215449).
  • [14] D. Porta, “Underwater acoustic communications”, Sea Technol., vol. 39, no. 2, pp. 49–55, 1998 (URL: https://archive.org/details /sim_sea-technology_1998-02_39_2/page/n3/mode/2up).
  • [15] N. Morozs et al., “Channel Modeling for Underwater Acoustic Network Simulation”, no. June, pp. 1–25, 2020 (DOI: 10.1109/ACCESS.2020.3011620).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-820b4987-f57f-4946-a9e5-be136cb19dd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.