PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experiment and prediction of water content of sour natural gas with an modified cubic plus association equation of state

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, new experimental value for water content in sour natural gas were reported. In addition, to predict the water content in sour natural gas, a modified cubic plus association equation of state (CPA-EoS) was also proposed. In this model, a new energy parameter a was proposed to make an accurate description of saturated liquid density. Additionally, a temperature dependent binary interaction parameter kij for six binary systems was also obtained. Lastly, a comparison between the prediction results of the modified CPA-EoS and the experimental data was presented, and the results showed that the modifi ed CPA-EoS could predict the water content in sour natural gas with high accuracy, which has an AAD of 3.6722% with experimental data in literatures and an AAD of 1.946% for experimental data reported in this work.
Rocznik
Strony
98--106
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • North China Electric Power University, School of control and Computer Engineering, Beijing 102206, PR China
autor
  • North China Electric Power University, School of control and Computer Engineering, Beijing 102206, PR China
autor
  • JARI Deepsoft Technology CO., LTD, Lianyungang 222006, PR China
Bibliografia
  • 1. And, A.H.M. & Richon, D. (2008). Semiempirical method for determining water content of methane-rich hydrocarbon gas in equilibrium with gas hydrates. Ind. & Enginee. Chem. Res. 47(2), 451–458. DOI: 10.1021/ie070372h.
  • 2. Lin, Z., Li, L., Zhu, J., Li, Q. & Fan, J. (2015). Analytical methods to calculate water content in natural gas. Chem.Enginee. Res. & Design, 93, 148–162. DOI: 10.1016/j.cherd.2014.05.021.
  • 3. GP SA. (1998). Engineering Data Book. eleventh ed. Tulsa: Gas Processors Association.
  • 4. Zirrahi, M., Azin, R., Hassanzadeh, H. & Moshfeghian, M. (2010). Prediction of water content of sour and acid gases. Fluid Phase Equilibria, 299(2), 171–179. DOI: 10.1016/j.fluid.2010.10.012.
  • 5. Ziabakhsh-Ganji, Z. & Kooi, H. (2012). An equation of state for thermodynamic equilibrium of gas mixtures and brines to allow simulation of the effects of impurities in subsurface co 2, storage. International J. Greenhouse Gas Control, 11(11), 21–34. DOI: 10.1016/j.ijggc.2012.07.025.
  • 6. Kontogeorgis, G.M., Voutsas, E.C., And, I.V.Y. & Tassios, D.P. (1996). An equation of state for associating fl uids. Ind. & Enginee. Chem. Res. 35(11), 4310–4318. DOI: 10.1021/ie9600203.
  • 7. Austegard, A., Solbraa, E., Koeijer, G.D. & Mølnvik, M.J. (2006). Thermodynamic models for calculating mutual solubilities in h2o–co2 –ch4, mixtures. Chem. Enginee. Res. & Design, 84(9), 781–794. DOI: 10.1205/cherd05023.
  • 8. O iveira, M.B., Coutinho, J.A.P., & Queimada, A.J. (2007). Mutual solubilities of hydrocarbons and water with the cpaeos. Fluid Phase Equilibria, 258(1), 58–66. DOI: 10.1016/j.fluid.2007.05.023.
  • 9.Adisasmito, S., Iii, R.J.F. & Jr, E.D.S. (1991). Hydrates of carbon dioxide and methane mixtures. J. Chem. & Enginee. Data, 36(1), 68–71. DOI: 10.1021/je00001a020.
  • 10. Dharmawardhana, P.B., Parrish, W.R., & Sloan, E.D. (1980). Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Le Mans, 19(4), 410–414. DOI: 10.1021/i160076a015.
  • 11. Mekala, P. & Sangwai, J.S. (2014). Prediction of phase equilibrium of clathrate hydrates of multicomponent natural gases containing co 2, and h 2 s. J. Petrol. Sci. & Enginee. 116(2), 81–89. DOI: 10.1016/j.petrol.2014.02.018.
  • 12. Li, Z ., & Firoozabadi, A. (2009). Cubic-plus-association equation of state for water-containing mixtures: is “cross association” necessary?. Aiche Journal, 55(7), 1803–1813. DOI: 10.1002/aic.11784.
  • 13. Herslund, P. J., Thomsen, K., Abildskov, J. & Solms, N.V. (2012). Phase equilibrium modeling of gas hydrate systems for co 2, capture. J. Chem. Thermodyn. 48(5), 13–27. DOI: 10.1016/j.jct.2011.12.039.
  • 14. L i, L ., Zhu, L., & Fan, J. (2016). The application of cpa-vdwp to the phase equilibrium modeling of methane-rich sour natural gas hydrates. Fluid Phase Equilibria, 409, 291–300. DOI: 10.1016/j.fl uid.2015.10.017.
  • 15. DIPPR (2011). Design Institute for Physical Properties, Diadem 801.
  • 16. Ruffine, L., P. Mougin, A. & Barreau, A. (2006). How to represent hydrogen sulfide within the cpa equation of state. Ind. Eng. Chem. Res. 45(22), 7688–7699. DOI: 10.1021/ie0603417.
  • 17. Ruffine, L. & Trusler, J.P.M. (2010). Phase behaviour of mixed-gas hydrate systems containing carbon dioxide. J. Chem. Thermodyn. 42(5), 605–611. DOI: 10.1016/j.jct.2009.11.019.
  • 18. Song, K.Y., & Kobayashi, R. (1987). Water content of CO2 in equilibrium with liquid water and/or hydrates. Spe Formation Evaluation, 2(4), 500–508. DOI: 10.2118/15905-PA. 106 Pol. J. Chem. Tech., Vol. 20, No. 2, 2018
  • 19. Seo, M.D., Kang, J.W., & Lee, C.S. (2011). Water solubility measurements of the co2-rich liquid phase in equilibrium with gas hydrates using an indirect method. J. Chem. & Enginee. Data, 56(5), 2626–2629. DOI: 10.1021/je2001232.
  • 20. Chapoy, A., Mohammadi, A.H., Chareton, A., Tohidi, B. & Richon, D. (2004). Measurement and modeling of gas solubility and literature review of the properties for the carbon dioxide−water system. Ind. & Enginee. Chem. Res. 43(7), págs. 1794–1802. DOI: 10.1021/ie034232t.
  • 21. Shigeru Bando, Fumio Takemura, Masahiro Nishio, Eiji Hihara, A. & Akai, M. (2003). Solubility of co2 in aqueous solutions of nacl at (30 to 60)°C and (10 to 20) mpa. J. Chem. & Enginee. Data, 48(3). DOI: 10.1021/je0255832.
  • 22.Winkler, L.W..(1906) . Regularity in the absorption of gases by liquids Physical Chemical.
  • 23. W right, R.H. & Maass, O. (1932). The electrical conductivity of aqueous solutions of hydrogen sulphide. Canadian J. Res. 6(6), 588-595. DOI: 10.1139/cjr32-047.
  • 24.Wright, R.H. & Maass, O. (1932). The solubility of hydrogen sulphide in water from the vapor pressures. Canadian J. Res. 6(1), 94-101. DOI: 10.1139/cjr32-006.
  • 25. Selleck, F.T., Carmichael, L.T. & Sage, B.H. (1952). Phase behavior in the hydrogen sulfi de-water system. Industrial & Engineering Chemistry, 44(9), 2219–2226. DOI: 10.1021/ie50513a064.
  • 26. Reamer, H.H., Sage, B.H., & Lacey, W.N. (1951). Phase equilibria in hydrocarbon systems – volumetric and phase behavior of the methane-hydrogen sulfide system. Ind. & Enginee. Chem. 43(4). DOI: 10.1021/ie50496a052.
  • 27. C oque let, C., Valtz, A., Stringari, P., Popovic, M., Richon, D., Mougin, P. (2014). Phase equilibrium data for the hydrogen sulphide + methane system at temperatures from 186 to 313 K and pressures up to about 14 MPa, 383:94-9. DOI: 10.1016/j.fluid.2014.09.025.
  • 28. Wei, M.S.W., Brown, T.S., Kidnay, A.J. & Sloan, E.D. (1995). Vapor + liquid equilibria for the ternary system methane + ethane + carbon dioxide at 230 k and its constituent binaries at temperatures from 207 to 270 k. J. Chem. & Enginee. Data, 40(4), 726–731. DOI: 10.1021/je00020a002.
  • 29. Webst er, L.A. & Kidnay, A.J. (2001). Vapor−liquid equilibria for the methane−propane−carbon dioxide systems at 230 k and 270 k. J. Chem. Eng. Data, 46(3), 759–764. DOI: 10.1021/je000307d.
  • 30. Donne lly, H.G. & Katz, D.L. (1954). Phase equilibria in the carbon dioxide–methane system. Ind. & Enginee. Chem. 46(3), 511–517. DOI: 10.1021/ie50531a036.
  • 31. Bierlein, J.A. & Kay, W.B. (1953). Phase-equilibrium properties of system carbon dioxide-hydrogen sulfide. Ind. & Enginee. Chem. 45(3), 618–624. DOI: 10.1021/ie50519a043.
  • 32. C hapoy, A., Coquelet, C., Liu, H., Valtz, A. & Tohidi, B. (2013). Vapour–liquid equilibrium data for the hydrogen sulphide (h 2 s) + carbon dioxide (co 2 ) system at temperatures from 258 to 313 k. Fluid Phase Equilibria, 356(1–2), 223-228. DOI: 10.1016/j.fluid.2013.07.050.
  • 33. Sobocinski, D.P. & Kurata, F. (1959). Heterogeneous phase equilibria of the hydrogen sulfi de–carbon dioxide system. Aiche J., 5(4), 545–551. DOI: 10.1002/aic.690040217.
  • 34. Aoyagi, K., Song, K.Y., Kobayashi, R., Sloan, E.D., Dharmawardhana, P.B. (1980) (I). The Water Content and Correlation of the Water Content of Methane in Equilibrium with Hydrates, and (II). The Water Content of a High Carbon Dioxide Simulated Prudhoe Bay Gas in Equilibrium with Hydrates. Tulsa: GPA.
  • 35. Antonin Chapoy, A .H.M., Bahman Tohidi, A. & Richon, D. (2004). A semiempirical approach for estimating the water content of natural gases. Ind. & Enginee. Chem. Res. 43(22), 7137–7147. DOI: 10.1021/ie049867m.
  • 36. Michelsen, M .L. JMM (2007). Thermodynamic Models: Fundamentals & Computational Aspects. second ed. ed. Denmark: Tie-Line Publications.
  • 37. Nget al., H.J. Ng CJC, H. Schroeder (2001). Water Content of Natural Gas Systems Containing Acid Gas. Tulsa: GPA Research Report.
  • 38. L ukacs, J. & Robinson, D.B. (1963). Water content of sour hydrocarbon systems. Society of Petroleum Engineers Journal, 3(4), 293–297. DOI: 10.2118/614-PA
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82022c55-b370-44df-a293-d396bf9179f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.