PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Suitability assessment of artificial neural network to approximate surface subsidence due to rock mass drainage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the previous studies conducted by the authors, a new approach was proposed, namely the tools of artificial intelligence. One of neural networks is a multilayer perceptron network (MLP), which has already found applications in many fields of science. Sequentially, a series of calculations was made for different MLP neural network configuration and the best of them was selected. Mean square error (MSE) and the correlation coefficient R were adopted as the selection criterion for the optimal network. The obtained results were characterized with a considerable dispersion. With an increase in the amount of hidden neurons, the MSE of the network increased while the correlation coefficient R decreased. Similar conclusions were drawn for the network with a small number of hidden neurons. The analysis allowed to select a network composed of 24 neurons as the best one for the issue under question. The obtained final answers of artificial neural network were presented in a histogram as differences between the calculated and expected value.
Rocznik
Strony
101--107
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Faculty of Mine Surveying and Environmental Engineering, AGH University of Science and Technology, Kraków, Poland
autor
  • Faculty of Mine Surveying and Environmental Engineering, AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • 1.Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28e40. http://dx.doi.org/10.1016/j.jhydrol.2011.06.013.
  • 2.Ambrozic, T., & Turk, G. (2003). Prediction of subsidence due to underground mining by artificial neural networks. Computers & Geosciences, 29(5), 627e637. http://dx.doi.org/10.1016/S0098-3004(03)00044-X.
  • 3.Ghose, D. K., Panda, S. S., & Swain, P. C. (2010). Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. Journal of Hydrology, 394(3-4), 296e304. http://dx.doi.org/10.1016/j.jhydrol.2010.09.003.
  • 4.Gruszczyński, W. (2007). Zastosowanie sieci neuronowych do prognozowania deformacji górniczych [Application of neural networks for prediction of mining-induced deformations]. Doctoral dissertation. Kraków: Akademia Górniczo-Hutnicza.
  • 5.Jung, Y. B., Cheon, D. S., & Choi, S. O. (2005). Estimation of subsidence due to mining using artificial neural network. In Y. Erdem, & T. Solak (Eds.), Preliminary study. Underground Space Use: Analysis of the Past and Lessons for the Future (pp. 297e302). London: Taylor & Francis Group.
  • 6.Kim, K. D., Lee, S., & Oh, H. J. (2008). Prediction of ground subsidence in Samcheok City, Korea using artificial neural networks and GIS. Environmental Geology, 58(1), 61e70. http:// dx.doi.org/10.1007/s00254-008-1492-9.
  • 7.Kumar, M., Raghuwanshi, N. S., & Singh, R. (2010). Artificial neural networks approach in evapotranspiration modeling: a review. Irrigation Science, 29(1), 11e25. http://dx.doi.org/10.1007/s00271-010-0230-8.
  • 8.Lee, S., Park, I., & Choi, J. K. (2012). Spatial prediction of ground subsidence susceptibility using an artificial neural network. Environmental Management, 49(2), 347e358. http://dx.doi.org/10.1007/s00267-011-9766-5.
  • 9.Li, X., Shu, L., Liu, L., Yin, D., & Wen, J. (2012). Sensitivity analysis of groundwater level in Jinci Spring Basin (China) based on artificial neural network modeling. Hydrogeology Journal, 20(4), 727e738. http://dx.doi.org/10.1007/s10040-012-0843-5.
  • 10.Oh, H. J., & Lee, S. (2011). Integration of ground subsidence hazard maps of abandoned coal mines in Samcheok, Korea. International Journal of Coal Geology, 86(1), 58e72. http:// dx.doi.org/10.1016/j.coal.2010.11.009.
  • 11.sowski, S. (2006). Sieci neuronowe do przetwarzania informacji (wyd. II) [Neural networks for information processing (2nd edition). Warszawa: Oficyna Wydawnicza PW.
  • 12.Park, I., Choi, J., Jin Lee, M., & Lee, S. (2012). Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Computers & Geosciences, 48, 228e238. http://dx.doi.org/10.1016/j.cageo.2012.01.005.
  • 13.Pawlus, D. (2007). Prognozowanie osiada n powierzchni terenu przy użyciu sieci neuronowych [Prediction of Surface subsidence using neural networks]. Górnictwo i Geoinżynieria, 31(3), 329e335.
  • 14.Subbaiah, R. (2011). A review of models for predicting soil water dynamics during trickle irrigation. Irrigation Science, 31(3),225e258. http://dx.doi.org/10.1007/s00271-011-0309-x.
  • 15.Tadeusiewicz, R. (1993). Sieci neuronowe [Neural networks]. Warszawa: Akademicka Oficyna Wydawnicza RM. Seria Problemy Współczesnej Nauki i Techniki. Informatyka.
  • 16.Tadeusiewicz, R. (2013). Biocybernetyka: metodologiczne podstawy dla inżynierii biomedycznej [Biocybernetics: methodological basis for biomedical engineering]. Warszawa: Wydawnictwo Naukowe PWN.
  • 17.Witkowski, W. T. (2014). Review of computational models using to subsidence prediction due to fluid withdrawal. In 15. Geokinematischer Tag, 15. und 16. Mai 2014, Freiberg (pp. 117e127).
  • 18.Xia-Ting, F., Young Jia, W., & Jian Guo, Y. (1996). A Neural Network Model for Real-time Roof Pressure Prediction on Coal Mines. International Journal of Rock Mechanics and Mining Sciences, 33(6), 647e653.
  • 19.Yang, W., & Xia, X. (2013). Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on field measurement and artificial neural networks. Computers &Geosciences, 52, 199e203. http://dx.doi.org/10.1016/j.cageo.2012.10.017.
  • 20.Zhang, H., Liu, L., & Liu, H. (2011). Mountain ground movement prediction caused by mining based on BP-neural network. Journal of Coal Science and Engineering(China), 17(1), 12e15.http://dx.doi.org/10.1007/s12404-011-0103-7.
  • 21.Zhu, L., Gong, H., Li, X., Li, Y., Su, X., & Guo, G. (2013). Comprehensive analysis and artificial intelligent simulation of land subsidence of Beijing, China. Chinese Geographical Science, 23(2), 237e248. http://dx.doi.org/10.1007/s11769-013-0589-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8200ab81-279c-4f50-b18e-1f563be962ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.