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Based on the previous studies conducted by the authors, a new approach was proposed,

namely the tools of artificial intelligence. One of neural networks is a multilayer perceptron

network (MLP), which has already found applications in many fields of science. Sequen-

tially, a series of calculations was made for different MLP neural network configuration and

the best of them was selected. Mean square error (MSE) and the correlation coefficient R

were adopted as the selection criterion for the optimal network. The obtained results were

characterized with a considerable dispersion. With an increase in the amount of hidden

neurons, the MSE of the network increased while the correlation coefficient R decreased.

Similar conclusions were drawn for the network with a small number of hidden neurons.

The analysis allowed to select a network composed of 24 neurons as the best one for the

issue under question. The obtained final answers of artificial neural network were pre-

sented in a histogram as differences between the calculated and expected value.

© 2015 The Authors. Productioin and hosting by Elsevier B.V. on behalf of Central Mining

Institute in Katowice. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Exploitation of deep-lying minerals is accompanied by

adverse transformations in the ground surface. In addition to

the direct effects associated with the resulting post-

exploitation void, indirect effects can be distinguished,

which include i.a. rock drainage. Formed on the surface of the

ground, the so-called drainage basin is usually summed with

the direct effects. The subsidence observed on the surface are

the sum of these two types of interactions. In the analyses of

transformations effects and subsidence forecasts, indirect

influences are often omitted due to the low values of these
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type of subsidence occurring in the vast time horizon. A

difficult issue is also the very process of forecasting

dewatering-induced changes associated with the complexity

of the problem of aquifers compaction.

In the world literature a variety of approaches to modelling

this problem, not only in mining areas can be found. A thor-

ough discussion of the existing methods of computation has

been included in the publication “Review of computational

models using to subsidence prediction due to fluid withdrawal”

(Witkowski, 2014). An overview of the existing solutions and

their usefulness in the prediction process of ground surface

and rock mass displacements caused by drainage of water-

bearing horizons is presented there. The simplest of the
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cited approaches are empirical methods, which by using the

information about the current state of surface deformations

allow subsidence prediction in the short term. However, they

do not take into consideration physical and mechanical

properties of the individual layers of the rock mass. Semi-

theoretical models are slightly more complex. They use

fundamental physical parameters describing the aquifers.

The calculations are based on generalized information about

the geological conditions without taking into account the

complexity of the compaction process of compressible layers.

Another approach that can be distinguished in the prediction

of drainage changes is hydrogeological modelling, in which

the problem of fluid flow and rock medium deformations is

perceived theoretically. Such a solution in a complete manner

describes the phenomenon and does not require large

amounts of measurement data, but also adopts assumptions

simplifying the complex nature of compaction phenomenon.

Repeatedly, the computational process must be preceded by

the calibration of the theoretical model formed for the local

geological conditions. Another of the approaches to the issue

are solutions based on the theory of influence functions.

However, they also adopt considerable simplifications and

require the appointment of local values of the theory param-

eters based on geodetic survey data.

With this critical overview of the existing solutions follows

the concept of employing a different approach to the predic-

tion of dewatering-induced changes. Treating the compaction

process as complex and difficult to describe thoroughly, using

classic methods of calculation, it has been decided to use

methods of artificial intelligence. Testing the concept outlined

above will enable the verification of the working thesis. In the

light of this thesis, themathematical tools, which are artificial

neural networks can be regarded as universal approximators

that can successfully reproduce the compaction process of

aquifers.

In this paper, it has been decided to use a multi-layer

perceptron (MLP) network to set large-surface approximation

of drainage basin in the area of one of the Polish underground

mines. The task which was given for the network was to

process measurement information to determine the mapping

process.
2. Methods

Knowledge of the construction and operation of the human

brain has allowed the development of a separate field of sci-

ence called artificial intelligence. Widely developing branches

are i.a. artificial neural networks, which are successfully used

in engineering problems (Tadeusiewicz, 1993, 2013). Each

network consists of single neurons of different types and

structure. In 1943, one of the first models of theMcCulloch-Pitts

neuron (Osowski, 2006) was formed, which sums input signals

xi to the neuron with appropriate weights wi and compares

them with the assumed threshold wi0. Output signal yi is

expressed by:

yi ¼ f

 XN
i¼1

wixi þwi0

!
(2.1)
Function f is called activation function, which in themodel

of theMcCulloch-Pitts neuron adopts the form of step-function:

fðuÞ ¼
�
1; u> 0
0; u � 0

(2.2)

Similarly as in a nerve cell, the sum of all excitations must

be greater than the threshold of a nerve cell activation. Only in

this case, an electric signal can be sent in the form of a nerve

impulse. Likewise, in the presented neuron model, the

appropriate product sum of signals and weights can allow the

activation of the neuron as an output signal yi ¼ 1. In addition

to the presented neuron, there are a number of other models

such as neurons of sigmoidal, radial, the Adaline, instar and

Grosseberg's outstar, the WTA and Hebb type as well as sto-

chastic model of a neuron. The most popular model from the

utilitarian point of view is the sigmoidal neuron with a

continuous function with unipolar activation in the form:

fðxÞ ¼ 1
1þ e�bx

(2.3)

or a bipolar function in the form:

fðxÞ ¼ tghðbxÞ (2.4)

where b is a parameter selected by the user and determines

the shape of the activation function.

Only a juxtaposition ofmany neurons in a coherent system

creates an artificial neural network and determines its ability

to process signals similarly to the human body. Depending on

the way of signal flow through the structure, one-way or

recursive networks with the so-called reciprocal action be

distinguished. Among the many existing models of neural

networks, the most popular can be considered the one-way,

multi-layered artificial neural network with sigmoid activa-

tion function also known as multi-layer perceptron (MLP)

network. Themost important problem in creating a network is

an optimal choice of connection weights between neurons.

They contain all the acquired and generalized “knowledge”.

The most optimal selection of weights takes place in the

process of network learning. It can occur in two variants, su-

pervised learning (with a teacher) or unsupervised learning

(without a teacher). The first method is performed by

comparing the responses from the network with pre-set, ex-

pected values. On their basis the objective function is mini-

mized. Adoption of continuous activation function allows the

use of gradient network learning methods such as steepest

descent method, variable metric algorithm and Lev-

enbergeMarquardt algorithm considered the most effective in

the artificial neural networks learning (Osowski, 2006). Prop-

erly trained network is able to generalize the acquired

knowledge. It can be said that in this way the network be-

comes a universal approximator of several variables function,

realizing some nonlinear mapping of input vector x into the

expected response vector y:

y ¼ fðxÞ (2.5)

In the engineering problems, artificial intelligence is used

for such issues as approximation and interpolation, pattern

recognition and classification, data compression, prediction,

control and identification (Osowski, 2006; Tadeusiewicz, 2013).
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http://dx.doi.org/10.1016/j.jsm.2015.08.014


j o u rn a l o f s u s t a i n a b l e m i n i n g 1 4 ( 2 0 1 5 ) 1 0 1e1 0 7 103
Artificial neural networks have been applied also in sci-

entific fields such as geology (Subbaiah, 2011; Xia-Ting, Young

Jia,& Jian Guo, 1996; Zhu et al., 2013), hydrology (Adamowski&

Chan, 2011; Ghose, Panda, & Swain, 2010; Kumar,

Raghuwanshi, & Singh, 2010; Li, Shu, Liu, Yin, & Wen, 2012)

or surface protection (Ambro�zi�c & Turk, 2003; Gruszczy�nski,

2007; Jung, Cheon, & Choi, 2005; Kim, Lee, & Oh, 2008; Lee,

Park, & Choi, 2012; Oh & Lee, 2011; Park, Choi, Jin Lee, & Lee,

2012; Pawlu�s, 2007; Yang & Xia, 2013; Zhang, Liu, & Liu, 2011).
3. Field studies

In order tomonitor the development of depression cone in the

subsequent water-bearing complexes, a vast network of pie-

zometers going far beyond the mining area of the mine has

been formed (Fig. 1). Performed periodicmeasurements of free

surface of water helped to determine the course of the

piezometric surface in the subsequent years of deposit

exploitation. In the analysed area, four water-bearing com-

plexes can be distinguished, which consist of a network of

devices in the form of:

� 9 piezometers in I aquifer,

� 21 piezometers in II aquifer,

� 44 piezometers in III aquifer,

� 8 piezometers in IV aquifer.

The first pizometricmeasurements weremade nearly forty

years ago. In subsequent years, the network of the observed

piezometers was gradually enlarged. Unfortunately, with the

passage of time some of the equipment was destroyed or

became obstructed. By 2011, there were only 45 devices well-

functioning, which represents only 55% of all the piezome-

ters installed in the history of the mine. Due to the limited
Fig. 1 e The range of current information on
number of devices in different aquifers, information about

pizometric pressure changes repeatedly cover only part of the

mining area (Fig. 2). In the case of artificial neural networks,

deficiencies in the information held can be adopted. As far as

possible, such situations should be avoided since incomplete

information may disrupt the learning process and especially

the desired generalization of the acquired knowledge. How-

ever, in the undertaken task, it has been decided to use the

existing information and allow the neural network to locate

the relationship between the assumed cause of the phenom-

enon and the observed effect on the surface.

All information has been collected and processed in the

GIS-type programme. Using the available tools, the learning

vectors have been prepared that were used in subsequent

analyses. Due to the incompleteness of both, the geological

and piezometric data, there were areas with limited infor-

mation, which is presented in Fig. 2. The sample gaps in data

have been marked in red. Fig. 2 shows two vectors for which

the collected information can be seen as good (a) and as weak

(b). A total of 700 learning vectors have been prepared for the

analysis.

Finally, it was decided at the entrance to the network to use

information such as:

� information from a network of piezometric holes (changes

in piezometric levels) e assuming that the change in the

pressure existing in the aquifer initiates the process of

medium compaction;

� thickness of the individual aquifers e the bigger, the larger

the expected medium compaction in your area;

� information on the location of themain fault in the vicinity

of the mining area e it is a natural hydrogeological win-

dow, which influences the distribution of dewatering-

induced displacements on the surface of the ground.
individual aquifers and their geology.

http://dx.doi.org/10.1016/j.jsm.2015.08.014
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Fig. 2 e Examples of training vectors with a good (a) or weak (b) information.
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4. Results and discussion

Using the information previously presented, learning data

sets x have been created in three variants. The first one as-

sumes training a network based solely on the value of piezo-

metric pressure changes in the subsequent aquifers. In the

second one, additionally the information about the thickness

of each compressible layer was used. The third variant was

accompanied by information about the distance from the fault

zone. The whole of the analyzes was performed using Matlab

R2010a software with an available extension Neural Network

Toolbox. In the analyzes it has been decided to use a multi-

layered perceptron network MLP with one hidden layer. For

the first layer, a bipolar sigmoid activation function of the

parameter b ¼ 1, was adopted whereas for the input layer a

linear activation function was adopted. In the following cal-

culations were used 2, 4, 8, 12, 16, 20, 24, 28, 32, 36, 42, 48, 56,

64, 72, 84, 92 and 100 neurons in the hidden layer. For each of

the networks, a training process was performed 30 times with

initialization of connection weights each time. In the learning

process, an implemented LevenbergeMarquardt algorithm was

used. Calculations were performed using pre-prepared
Table 1 e Fragment of data used for neural network training.

ID w [mm] dh_I [m] dh_II [m] dh_III [m] dh_IV [m]

344 330.81 1 39 200 e

345 407.19 1 47 218 e

346 457.80 1 54 230 e

347 480.25 e 61 237 e

348 486.52 e 66 240 e

...
information in the form of 700 learning vectors. The fragment

of values accepted for the calculation is presented in Table 1

where:

� w e value of dewatering-induced subsidence;

� dh_I e dh_IV e value of pizometric surface subsidence;

� odl_us e distance from the fault zone;

� m_I e m_IV e thickness of particular aquifers.

In the first stage of the calculations, each of the informa-

tion was used independently such as height change of

piezometric levels (Piezo), the distance from the fault zone

(Odl) and the information about the thickness of aquifers

(Geol). As an assessment criterion, mean square error (MSE)

was adopted, calculated in the validation process of neural

network. The resulting error values from the trained network

in the first stage of the calculation is shown in figure (Fig. 3). It

is clearly visible that information about pizometric pressure

change (Piezo) result in lower error values in relation to the

remaining two variants.

In the next stage of the network learning process, it was

decided to use a combination of the existing information.

Simultaneous use of piezometric and geological data reduced
odl_us [km] m_I [m] m_II [m] m_III [m] m_IV [m]

3.02 e e e e

3.63 53 2 120 349

4.23 52 1 121 344

4.84 46 1 122 341

5.44 40 2 123 335

http://dx.doi.org/10.1016/j.jsm.2015.08.014
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Fig. 3 e Graph of MSE values for the different input data.
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error values (Fig. 4 e Piezo_geol). Adding the information about

the distance from the fault zone resulted in a further

improvement of the obtained results. However, as the graph

shows, in this case therewere problemswith determination of

the optimal solution which was seen in the form of randomly

occurring extreme values of errors (Fig. 4 e Piezo_geol_odl). A

zone was also clearly marked in which the selection of an

appropriate amount of hidden neurons enhances the learning

process. Up to 12 neurons, hidden values of errors hardly fall

below 100. It is only in the range of from 16 to 24 hidden

neurons that occasionally low error values of MSE are

observed.

The degree of adjusting the data to the expected value is

demonstrated by the correlation coefficient (R), assigned to

each cycle of calculation. Fig. 5 shows the distribution of this

value in subsequent calculations, for different numbers of
Fig. 4 e Graph of MSE values in the v
hidden neurons. The coefficient adopts a value in the range

from 0.55 to 0.99. An area can be distinguished for 24 and 28

hidden neurons, where the correlation did not fall below 0.95.

Taking into account this fact and the previous findings, it was

decided to carry out a final calculation for the structure with

one hidden layer composed of 24 neurons. A mean square

error within the limits of 100 and correlation coefficient at the

level of 0.98 were expected. The final network has been

trained in 21 computing ages obtaining MSE equal to 100.1

with a correlation coefficient of 0.998. Responses obtained as a

result of modelling were compared with input values,

measured in the area of drainage-induced subsidence. The

difference in the obtained results was presented in the figure

in the formof a histogramdistribution of differences (Fig. 6). In

most cases the differences in the network response and

measurements fluctuated in the range of 15mm. Single points
ariant of combining input data.

http://dx.doi.org/10.1016/j.jsm.2015.08.014
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Fig. 5 e Graph of the correlation coefficient value of the obtained networks responses.
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received higher or lower values. In conclusion, it can be said

that so network prepared in this way well-approximated the

set surface despite the incompleteness of the training data.
Fig. 6 e The histogram with value differences of the

network response and the input data [mm].
5. Conclusions

Artificial intelligence tools provide a good tool for solving en-

gineering problems. The quoted brief review of the literature

shows the versatility of this tool in selected areas of science.

The aim of the experiment was to measure the problem of

limited information coming from the mining area in the

context of training and proper operation of an artificial neural

network. Based on the carried out studies the following con-

clusions can be drawn:
� artificial neural networks can successfully be used in

problems connected with approximation of changes

caused by the carried out rock mass drainage;

� the developed neural network allows the performance of

calculations for incomplete input information;

� the use of 24 neurons in the hidden layer assures the

acceptable accuracy of calculations and appropriate level

of knowledge generalization;

� the resulting network model allows the drainage basin to

be approximated with an error at the level of 15 mm.

The next steps in the research will rely on the analysis of

the network other than the MLP of the presented issue. Ulti-

mately, a model of vertical displacements prediction induced

by rock mass drainage will be made.
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