Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Lithium-based battery systems (LBS) are used in various applications, from the smallest electronic devices to power generation plants. LBS energy storage technology, which can offer high power and high energy density simultaneously, can respond to continuous energy needs and meet sudden power demands. The lifetime of LBSs, which are seen as a high-cost storage technology, depends on many parameters such as usage habits, temperature and charge rate. Since LBSs store energy electrochemically, they are seriously affected by temperature. High-temperature environments increase the thermal stress exerted on LBS and cause its chemical structure to deteriorate much faster. In addition, the fast charging feature of LBSs, which is generally presented as an advantage, increases the internal temperature of the cell and negatively affects the battery life. The proposed energy management approach ensures that the ambient temperature affects the charging speed of the battery and that the charging speed is adaptively updated continuously. So, the two parameters that harm battery health absorb each other, and the battery has a longer life. A new differential approach has been created for the proposed energy management system. The total amount of energy that can be withdrawn from LBS is increased by 14.18% as compared to the LBS controlled with the standard energy management system using the genetic algorithm optimized parameters. Thus the LBS replacement period is extended, providing both cost benefits and environmentally friendly management by LBSs turning into chemical waste distinctly later.
Rocznik
Tom
Strony
art. no. e151378
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electrical and Electronics Engineering, Faculty of Architecture and Engineering, Batman University,Bati Raman Campus 72000, Batman, Turkey
autor
- Department of Electrical and Electronics Engineering, Faculty of Architecture and Engineering, Batman University,Bati Raman Campus 72000, Batman, Turkey
Bibliografia
- [1] E.T. Sayed et al., “Renewable Energy and Energy Storage Systems,” Energies (Basel), vol. 16, no. 3, p. 1415, 2023, doi: 10.3390/en16031415.
- [2] M. Aneke and M. Wang, “Energy storage technologies and real life applications – a state of the art review,” Appl. Energy, vol. 179, pp. 350–377, 2016.
- [3] S. Algarni, V. Tirth, T. Alqahtani, S. Alshehery, and P. Kshirsagar, “Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development,” Sustain. Energy Technol. Assess., vol. 56, p. 103098, 2023, doi: 10.1016/j.seta.2023.103098.
- [4] J. Wang and W. Azam, “Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries,” Geosci. Front., vol. 15, no. 2, p. 101757, 2024, doi: 10.1016/j.gsf.2023.101757.
- [5] G. Yüksek and A.N. Mete, “A P&O Based Variable Step Size MPPT Algorithm for Photovoltaic Applications,” Gazi U. J. Sci., vol. 36, no. 2, pp. 608–622, 2023, doi: 10.35378/gujs.1050325.
- [6] G. Yüksek and A. Alkaya, “An adaptive energy management approach for battery-supercapacitor hybrid energy storage system,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150203, doi: 10.24425/bpasts.2024.150203.
- [7] M.M. Rana et al., “Applications of energy storage systems in power grids with and without renewable energy integration — A comprehensive review,” J. Energy Storage, vol. 68, p. 107811, 2023, doi: 10.1016/j.est.2023.107811.
- [8] S. Palanisamy, L. Shanmugasundaram, and S. Chenniappan, “Energy Storage Systems for Smart Power Systems,” in Artificial Intelligence-based Smart Power Systems, John Wiley & Sons, Ltd, 2023, pp. 99–114, doi: 10.1002/9781119893998.ch5.
- [9] D. Rekioua, “Energy Storage Systems for Photovoltaic and Wind Systems: A Review,” Energies (Basel), vol. 16, no. 9, p. 3893, 2023, doi: 10.3390/en16093893.
- [10] M.K. Khan, M. Raza, M. Shahbaz, U. Farooq, and M.U. Akram, “Recent advancement in energy storage technologies and their applications,” J. Energy Storage, vol. 92, p. 112112, 2024, doi: 10.1016/j.est.2024.112112.
- [11] M. Ratshitanga, A. Ayeleso, S. Krishnamurthy, G. Rose, A.A. Aminou Moussavou, and M. Adonis, “Battery Storage Use in the Value Chain of Power Systems,” Energies (Basel), vol. 17, no. 4, p. 921, 2024, doi: 10.3390/en17040921.
- [12] Z. Zarhri, “Electronic structure, stability, and strength of Cu–NiAl alloys: Experiment and DFT investigation,” Opto-Electron. Rev., vol. 30, no. 2, p. e141707, 2022, doi: 10.24425/opelre.2022.141707.
- [13] G. Yüksek and A. Alkaya, “A novel state of health estimation approach based on polynomial model for lithium-ion batteries,” Int. J. Electrochem. Sci., vol. 18, no. 5, p. 100111, 2023, doi: 10.1016/j.ijoes.2023.100111.
- [14] S. Kim et al., “Calendar life of lithium metal batteries: Accelerated aging and failure analysis,” Energy Storage Mater., vol. 65, p. 103147, 2024, doi: 10.1016/j.ensm.2023.103147.
- [15] A. Karger, J. Schmitt, C. Kirst, J.P. Singer, L. Wildfeuer, and A. Jossen, “Mechanistic calendar aging model for lithium-ion batteries,” J. Power Sources, vol. 578, p. 233208, 2023, doi: 10.1016/j.jpowsour.2023.233208.
- [16] M. Hallmann, C. Wenge, P. Komarnicki, and S. Balischewski, “Methods for lithium-based battery energy storage SOC estimation. Part I: Overview,” Arch. Electr. Eng., vol. 71, no. 1, pp. 139–157, 2022, doi: 10.24425/aee.2022.140202.
- [17] S. Dhawan, A. Sabharwal, R. Prasad, S. Shreya, A. Gupta, and Y. Parvez, “Performance analysis of a lithium-ion battery of an electric vehicle under various driving conditions,” Arch. Thermodyn., vol. 44, no. 3, pp. 143–160, 2023, doi: 10.24425/ather.2023.147541.
- [18] R. Ma et al., “Recent progress and challenges of multi-stack fuel cell systems: Fault detection and reconfiguration, energy management strategies, and applications,” Energy Conv. Manag., vol. 285, p. 117015, 2023, doi: 10.1016/j.enconman.2023.117015.
- [19] P.K. Behera and M. Pattnaik, “Design and real-time implementation of wind–photovoltaic driven low voltage direct current microgrid integrated with hybrid energy storage system,” J. Power Sources, vol. 595, p. 234028, 2024, doi: 10.1016/j.jpowsour.2023.234028.
- [20] S.A. Khan et al., “Advancements in battery thermal management system for fast charging/discharging applications,” Energy Storage Mater., vol. 65, p. 103144, 2024, doi: 10.1016/j.ensm.2023.103144.
- [21] Ayesha, M. Numan, M.F. Baig, and M. Yousif, “Reliability evaluation of energy storage systems combined with other grid flexibility options: A review,” J. Energy Storage, vol. 63, p. 107022, 2023, doi: 10.1016/j.est.2023.107022.
- [22] S. Singh, R.K. Saket, and B. Khan, “A comprehensive state-of-the-art review on reliability assessment and charging methodologies of grid-integrated electric vehicles,” IET Electr. Syst. Transp., vol. 13, no. 1, p. e12073, 2023, doi: 10.1049/els2.12073.
- [23] M. Rodriguez, D. Arcos–Aviles, and W. Martinez, “Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms,” Appl. Energy, vol. 335, p. 120771, 2023, doi: 10.1016/j.apenergy.2023.120771.
- [24] N. Ghaeminezhad, Z. Wang, and Q. Ouyang, “A Review on lithium-ion battery thermal management system techniques: A control-oriented analysis,” Appl. Therm. Eng., vol. 219, p. 119497, 2023, doi: 10.1016/j.applthermaleng.2022.119497.
- [25] A. Al Miaari and H.M. Ali, “Batteries temperature prediction and thermal management using machine learning: An overview,” Energy Rep., vol. 10, pp. 2277–2305, 2023, doi: 10.1016/j.egyr.2023.08.043.
- [26] V. Lucaferri, M. Quercio, A. Laudani, and F. Riganti Fulginei, “A Review on Battery Model-Based and Data-Driven Methods for Battery Management Systems,” Energies (Basel), vol. 16, no. 23, p. 7807, 2023, doi: 10.3390/en16237807.
- [27] X. Zhang, L. Li, and W. Zhang, “Review of Research about Thermal Runaway and Management of Li-ion Battery Energy Storage Systems,” in 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2020, pp. 3216–3220. doi: 10.1109/ IPEMC-ECCEAsia48364.2020.9367968.
- [28] R.R. Kumar, C. Bharatiraja, K. Udhayakumar, S. Devakirubakaran, K.S. Sekar, and L. Mihet-Popa, “Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications,” IEEE Access, vol. 11, pp. 105761–105809, 2023, doi: 10.1109/ACCESS.2023.3318121.
- [29] G. Huang, P. Zhao, and G. Zhang, “Real-Time Battery Thermal Management for Electric Vehicles Based on Deep Reinforcement Learning,” IEEE Internet Things J., vol. 9, no. 15, pp. 14060–14072, 2022, doi: 10.1109/JIOT.2022.3145849.
- [30] Z. Sun, Y. Guo, C. Zhang, H. Xu, Q. Zhou, and C. Wang, “A Novel Hybrid Battery Thermal Management System for Prevention of Thermal Runaway Propagation,” IEEE Trans. Transp. Electrif., vol. 9, no. 4, pp. 5028–5038, 2023, doi: 10.1109/TTE.2022.3215691.
- [31] C. Zhu, F. Lu, H. Zhang, J. Sun, and C.C. Mi, “A Real-Time Battery Thermal Management Strategy for Connected and Automated Hybrid Electric Vehicles (CAHEVs) Based on Iterative Dynamic Programming,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8077–8084, 2018, doi: 10.1109/TVT.2018.2844368.
- [32] K. Li, Q. Liu, Y. Hu, J. Gao, and H. Chen, “A Coupling Thermal Management Strategy Based on Fuzzy Control for a Range Extended Electric Vehicle Power System,” IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2573–2586, 2022, doi: 10.1109/TVT.2021.3138254.
- [33] A. Hamednia et al., “Charge Planning and Thermal Management of Battery Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 72, no. 11, pp. 14141–14154, 2023, doi: 10.1109/TVT.2023.3284916.
- [34] Y. Qin, Z. Xu, J. Du, H. Guo, L. Lu, and M. Ouyang, “External Liquid Cooling Method for Lithium-Ion Battery Modules Under Ultra-Fast Charging,” IEEE Trans. Ind. Appl., vol. 58, no. 6, pp. 7658–7667, 2022, doi: 10.1109/TIA.2022.3197391.
- [35] D.W. Sundin and S. Sponholtz, “Thermal Management of Li-Ion Batteries With Single-Phase Liquid Immersion Cooling,” IEEE Open J. Veh. Technol., vol. 1, pp. 82–92, 2020, doi: 10.1109/OJVT.2020.2972541.
- [36] M. Salameh, S. Wilke, B. Schweitzer, P. Sveum, S. Al-Hallaj, and M. Krishnamurthy, “Thermal State of Charge Estimation in Phase Change Composites for Passively Cooled Lithium-Ion Battery Packs,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 426–436, 2018, doi: 10.1109/TIA.2017.2763588.
- [37] V. Lucaferri et al., “Modeling and optimization method for Battery Energy Storage Systems operating at variable C-rate: A comparative study of Lithium technologies,” J. Energy Storage, vol. 73, p. 109232, 2023, doi: 10.1016/j.est.2023.109232.
- [38] L. Wang et al., “Construction of electrochemical model for high C-rate conditions in lithium-ion battery based on experimental analogy method,” Energy, vol. 279, p. 128073, 2023, doi: 10.1016/j.energy.2023.128073.
- [39] M.A. Hoque, M.K. Hassan, A. Hajjo, and T. Okita, “Characteristics of Li-Ion Battery at Accelerated C-Rate with Deep Learning Method,” Arab. J. Sci. Eng., vol. 48, no. 11, pp. 15127–15137, 2023, doi: 10.1007/s13369-023-08034-x.
- [40] D. Fioriti, C. Scarpelli, L. Pellegrino, G. Lutzemberger, E. Micolano, and S. Salamone, “Battery lifetime of electric vehicles by novel rainflow-counting algorithm with temperature and C-rate dynamics: Effects of fast charging, user habits, vehicle-to-grid and climate zones,” J. Energy Storage, vol. 59, p. 106458, 2023, doi: 10.1016/j.est.2022.106458.
- [41] C.H.B. Apribowo, S. Sarjiya, S.P. Hadi, and F.D. Wijaya, “Optimal Planning of Battery Energy Storage Systems by Considering Battery Degradation due to Ambient Temperature: A Review, Challenges, and New Perspective,” Batteries, vol. 8, no. 12, p. 290, 2022, doi: 10.3390/batteries8120290.
- [42] Z. Lu et al., “A comprehensive experimental study on temperature-dependent performance of lithium-ion battery,” Appl. Therm. Eng., vol. 158, p. 113800, 2019, doi: 10.1016/j.applthermaleng.2019.113800.
- [43] S. Hussain, M.U. Ali, S.H. Nengroo, I. Khan, M. Ishfaq, and H.-J. Kim, “Semiactive Hybrid Energy Management System: A Solution for Electric Wheelchairs,” Electronics (Basel), vol. 8, no. 3, p. 345, 2019, doi: 10.3390/electronics8030345.
- [44] Y. Troxler et al., “The effect of thermal gradients on the performance of lithium-ion batteries,” J. Power Sources, vol. 247, pp. 1018–1025, 2014, doi: 10.1016/j.jpowsour.2013.06.084.
- [45] S.N. Motapon, E. Lachance, L.-A. Dessaint, and K. Al-Haddad, “A Generic Cycle Life Model for Lithium-Ion Batteries Based on Fatigue Theory and Equivalent Cycle Counting,” IEEE Open J. Ind. Electron. Soc., vol. 1, pp. 207–217, 2020, doi: 10.1109/OJIES.2020.3015396.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81fc8f7c-a35c-400f-84bc-3380e78d3628
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.