PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustic Emission as a Method for Analyzing Changes and Detecting Damage in Composite Materials During Loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thanks to their excellent strength and durability, composite materials are used to manufacture many important structural elements. In the face of their extensive use, it is crucial to seek suitable methods for monitoring damages and locating their origins. The purpose of the article was to verify the possibility of applying the acoustic emissions (AE) method in the detection of damages in the structures of composite materials. The experimental part comprised static tensile tests carried out on various sandwich composites, including simultaneous registration of elastic waves with increasing loads, carried out with the use of an acoustic-electrical sensor connected. The signal obtained from the sensor was then further processed and used to draw up diagrams of the AE hits, amplitude, root mean square of the AE source signal (RMS) and duration in the function of time. These diagrams were then applied on their corresponding stretching curves, the obtained charts were analysed. The results obtained point to a conclusion that the acoustic emissions method can be successfully used to detect and locate composite material damages.
Rocznik
Strony
399--407
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr.
Twórcy
  • Gdynia Maritime University, Faculty of Marine Engineering, Department of Engineering Sciences, Gdynia, Poland
  • Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland
  • Gdynia Maritime University, Faculty of Marine Engineering, Department of Engineering Sciences, Gdynia, Poland
Bibliografia
  • 1. Aggelis D., Barkoula N.-M., Matikas T., Paipetis A. (2012), Acoustic structural health monitoring of composite materials: Damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics, Composities Science and Technology, 72 (10): 1127-1133, doi: 10.1016/j.compscitech.2011.10.011.
  • 2. Al-Jumaili S. K., Pearson M. R., Holford K. M., Eaton M. J., Pullin R. (2016), Acoustic emission source location in complex structures using full automatic delta T mapping technique, Mechanical Systems and Signal Processing, 72-73: 513-524, doi: 10.1016/j.ymssp.2015.11.026.
  • 3. Caesarendra W., Kosasih B., Tieu A. K., Zhu H., Moodie C. A. S., Zhu Q. (2016), Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing, Mechanical Systems and Signal Processing, 72-73: 134-159, doi: 10.1016/j.ymssp.2015.10.020.
  • 4. De Rosa I., Santulli C., Sarasini F. (2009), Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: A literature review, Composites Part A: Applied Science and Manufacturing, 40 (9): 1456-1469, doi: 10.1016/j.compositesa.2009.04.030.
  • 5. Dudzik K., Labuda W. (2020), The possibility of applying acoustic emission and dynamometric methods for monitoring the turning process, Materials (Basel), 13 (13): 2926, doi: 10.3390/ma13132926.
  • 6. Gołaski L. (1994), Acoustic emission in composite materials [in Polish: Emisja akustyczna w materiałach kompozytowych], [in]: Małecki J., Ranachowski Z. [Eds], Acoustic emission. Sources. Methods. Usage [in Polish: Emisja akustyczna. Źródła. Metody. Zastosowania], Warszawa: PASCAL.
  • 7. Gutkin R., Green C. J., Vangrattanachai S., Pinho S. T., Robinson P., Curtis P. T. (2011), On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses, Mechanical Systems and Signal Processing, 25 (4): 1393-1407, doi: 10.1016/j.ymssp.2010.11.014.
  • 8. Hoła J. (1999), Acoustic-emission investigation of failure of high strength concrete, Archives of Acoustics, 24 (2): 233-244.
  • 9. Juskowiak E., Małdachowska A., Panek M. (2013), Acoustic emission of composite sandwich panels during three-point bending [in Polish: Emisja akustyczna kompozytowych płyt przekładkowych podczas trójpunktowego zginania], Przetwórstwo Tworzyw, 19 (4): 351-354.
  • 10. Kurzydłowski K., Boczkowska A. S. J., Konopka K., Spychalski W. (2005), Monitoring of failures in the composites by non-destructive methods [in Polish: Monitorowanie uszkodzeń w kompozytach metodami nieniszczącymi], Polymers, 50 (4): 255-261.
  • 11. Kyzioł L., Panasiuk K., Barcikowski M., Hajdukiewicz G. (2020), The influence of manufacturing technology on the properties of layered composites with poliester-glass recyclate additive, Progress in Rubber, Plastics and Recycling Technology, 36 (1): 18-30, doi: 10.1177/1477760619895003.
  • 12. Marec A., Thomas J., Guerjouma R. E. (2008), Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data, Mechanical Systems and Signal Processing, 22 (6): 1441-1448, doi: 10.1016/j.ymssp.2007.11.029.
  • 13. McCrory J. P. et al. (2005), Damage classification in carbon fibre composites using acoustic emission: A comparison of three techniques, Composites: Part B, 68: 424-430, doi: 10.1016/j.compositesb.2014.08.046.
  • 14. Mohammadi R., Najafabadi M. A., Saeedifar M., Yousefi J., Minak G. (2017), Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites, Composites Part B: Engineering, 118: 427-435, doi: 10.1016/j.compositesb.2016.09.101.
  • 15. Monti A., El Mahi A., Jendli Z., Guillaumat L. (2016), Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission, Composites Part A: Applied Science and Manufacturing, 90: 100-110, doi: 10.1016/j.compositesa.2016.07.002.
  • 16. Nikbakht M., Yousefi J., Hosseini-Toudeshky H., Minak G. (2017), Delamination evaluation of composite laminates with different interface fiber orientations using acoustic emission features and micro visualization, Composites Part B: Engineering, 113: 185-196, doi: 10.1016/j.compositesb.2016.11.047.
  • 17. Panasiuk K., Hajdukiewicz G. (2017), Production of composites with added waste polyester-glass with their initial mechanical properties, Scientific Journals of the Maritime University of Szczecin, 52 (124): 30-36, doi: 10.17402/242.
  • 18. Panasiuk K., Kyzioł L., Dudzik K. (2019), The use of acoustic emission signal (AE) in mechanical tests, Przegląd Elektrotechniczny, 95 (11): 8-11, doi: 10.15199/48.2019.11.03.
  • 19. PN-EN ISO 527-4:2000, Plastics – Determination of mechanical properties under static stretching – Test conditions for isotropic and orthotropic fiber-reinforced plastic composites.
  • 20. PN-EN 1330-9:2017-09, Non-destructive testing – Terminology – Part 9: Terms used in acoustic emission testing.
  • 21. PN-EN 13554: 2011E, Non-destructive testing – Acoustic emission – General rules.
  • 22. PN-EN 15857: 2010E, Non-destructive testing – Acoustic emission – Testing of fiber-reinforced polymers – Specified methodology and general evaluation criteria.
  • 23. Ranachowski Z., Jóźwiak-Niedźwiedzka D., Brandt A., Dębowski T. (2012), Application of acoustic emission method to determine critical stress in fibre reinforced mortar beams, Archives of Acoustics, 37 (3): 261-268, doi: 10.2478/v10168-012-0034-3.
  • 24. Saeedifar M., Fotouhi M., Ahmadi Najafabadi M., Hosseini Toudeshky H., Minak G. (2016), Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission, Composites Part B: Engineering, 85: 113-122, doi: 10.1016/j.compositesb.2015.09.037.
  • 25. Shafiq B., Quispitupa A., Just F., Banos M. (2005), Sandwich Structures 7: Advancing with Sandwich Structures and Materials: Proceedings of the 7th International Conference on Sandwich Structures, Aalborg University, Aalborg, Denmark, August 29-31, 2005, Springer Science & Business Media, doi: 10.1007/1-4020-3848-8.
  • 26. Xiao Y., Qiao W., Fukuda H., Hatta H. (2016), The effect of embedded devices on structural integrity of composite laminates, Composite Structures, 153: 21-29, doi: 10.1016/j.compstruct.2016.06.007.
  • 27. Xingmin Z., Xiong Y. I. (2006), Investigation of damage mechanisms in self-reinforced polyethylene composites by acoustic emission, Composite Science and Technology, 66 (3-4): 444-449, doi: 10.1016/j.compscitech.2005.07.013.
  • 28. Yu Y.-H., Cho J.-H., Kweon J.-H., Kim D.-H. (2006), A study on the failure detection of composite materials using an acoustic emission, Composite Structures, 75 (1-4): 163-169, doi: 10.1016/j.compstruct.2006.04.070.
  • 29. Zaki A., Chai H., Aggelis D., Alver N. (2015), Non-destructive evaluation for corrosion monitoring in concrete: a review and capability of acoustic emission technique, Sensors, 15 (8): 19069-19101, doi: 10.3390%2Fs150819069.
  • 30. Zakłady Chemiczne „Organika Sarzyna” S.A., http://www.krisko.lublin.pl/chemia/zywice-poliestrowe-polimal/konstrukcyjne-ogolnego-stosowania-polimal-1094-awtp-1/polimal-1094-awtp-1/polimal-1094-awtp-1-a-5-kg-1.html (access: 20.07.2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81fa5796-fa5f-4b88-8e2b-72ddea03c813
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.