PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elektromobilność a zrównoważona gospodarka surowcami - wyzwania i perspektywy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Electromobility and sustainable management of raw materials - challenges and prospects
Języki publikacji
PL
Abstrakty
PL
Jednym z wyzwań transformacji energetycznej i polityki klimatycznej Unii Europejskiej jest wprowadzenie elektromobliności, a co za tym idzie zapewnienie odpowiednich poziomów dostaw surowców krytycznych. W kontekście elektryfikacji rynku motoryzacyjnego szczególne znaczenie ma produkcja baterii litowo-jonowych służących do zasilania nowoczesnych pojazdów elektrycznych. Obiecującą alternatywą do pozyskiwania metali krytycznych - litu i kobaltu z zasobów naturalnych jest ich odzyskiwanie z polimetalicznych odpadów baterii Li-ion, co pozwoliłoby na dywersyfikacje źródeł surowców oraz ich ponowne wykorzystanie w myśI zasad gospodarki o obiegu zamkniętym.
EN
One of the challenges of the energy transformation and European Union climate policy is the introduction of electromobility, thus ensuring appropriate levels of critical raw materials supply. In the context of the automotive market electrification, the production of lithium-ion batteries used to power modern electric vehicles is of particular importance. A promising alternative to the critical metals acquisition - lithium and cobalt from natural resources is their recovery from polymetallic waste Li-ion batteries, which would allow for the diversification of raw material sources and their reuse following the circular economy principles.
Rocznik
Tom
Strony
11--18
Opis fizyczny
Bibliogr. 86 poz., rys., tab.
Twórcy
  • Politechnika Wrocławska, Wydział Inżynierii Środowiska, Katedra Inżynierii Ochrony Środowiska
Bibliografia
  • [1] Assefi Mohammad, Samane Maroufi, Yusuke Yamauchi, Veena Sahajwalla. 2020. "Pyrometallurgical recycling of Li-ion, Ni-Cd and Ni-MH batteries: A minireview". Current Opinion in Green and Sustainable Chemistry 24: 26-31.
  • [2] Bank, S. P., G. Prabaharan, L. Kumar. 2017. "Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study". Journal of Cleaner Production 147: 37-43.
  • [3] „Baterie litowo-jonowe kluczem do niezależności energetycznej Europy". https://elektromobilni.pl/baterie-litowo-jonowe-kluczem-do-niezaleznosci-energetycznej-europy/ (dostęp: 3.03.2023).
  • [4] „Baterie litowo-jonowe przyszłością elektromobilności". https://edroga.pl/mobilnosc/baterie-litowo-jonowe-przyszloscia-eleIctromobilnosci-030717048 (dostęp: 3.03.2023).
  • [5] Bertuol Daniel A., Caroline M. Machado, Mariana L. Silva, Carnila O. Calgaro, Guilherme L. Dotto, Eduardo H. Tanabe. 2016. "Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction". Waste Management 51: 245-251.
  • [6] Bobba Silvia, Fabrice Mathieux, Gian Andrea Blengini. 2019. "How will second-use of batteries affect stocks and flows in the EU? A model for traction Li-ion batteries". Resources, Conservation and Recycling 145: 279-291.
  • [7] „CRM list 2020". https://rmis.jrc.ec.europa.eu/?page=crm-list-2020-e294f6 (dostęp: 3.03.2023).
  • [8] Chen Mengyuan, Xiaotu Ma, Bin Chen, Renata Arsenault, Peter Karlson, Nakia Simon, Yan Wang. 2019. "Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries". Joule 3: 2622-2646.
  • [9] Chen Xiangping, Hongrui Ma, Chuanbao Luo, Tao Zhou. 2017. "Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid". Journal of Hazardous Materials 326: 77-86.
  • [10] Czerwiński Andrzej. 2018. „Akumulatory, baterie, ogniwa". WKL, Warszawa.
  • [11] Do Minh Phuong, Joseph Jegan Roy, Bin Cao, Madhavi Srinivasan. 2022. "Green Closed-Loop Cathode Regeneration from Spent NMC-Based Lithium-Ion Batteries through Bioleaching". ACS Sustainable Chemistry & Engineering 10 (8): 2634-2644.
  • [12] "Electric Vehicles - Worldwide". https://www.statista.com/outlook/mmo/electric-vehicles/worldwide (dostęp: 3.03.2023).
  • [13] European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. 2017. "Methodology for establishing the EU list of critical raw materials: guidelines". https://data.europa.eu/doi/10.2873/769526 (dostęp: 3.03.2023).
  • [14] European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. 2020. "Badanie dotyczące unijnego wykazu surowców krytycznych (2020): raport końcowy". https://data.europa.eu/doi/10.2873/85068 (dostęp: 3.03.2023).
  • [15] European Commission, Internal Market, Industry, Entrepreneurship and SMEs. "Critical raw materials". https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (dostęp: 3.03.2023).
  • [16] European Commission, Joint Research Centre. 2020. "Critical materials for strategic technologies and sectors in the EU - a foresight study". https://rmis.jrc.ec.europa.eu/uploads/CRMsfor_Strategic Technologies_and_Sectors_in_the_EU_2020.pdf (dostęp: 3.03.2023).
  • [17] „Europejski Zielony Ład". https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_pl (dostęp: 3.03.2023).
  • [18] Fan Bailin, Xiangping Chen, Tao Zhou, Jinxia Zhang, Bao Xu. 2016. "A sustainable process for the recovery of valuable metals from spent lithium-ion batteries". Waste Management & Research 34: 474-481.
  • [19] Gao Wenfang, Jiali Song, Hongbin Cao, Xiao Lin, Xihua Zhang, Xiaohong Zheng, Yi Zhang, Zhi Sun. 2018. "Selective recovery of valuable metals from spent lithium-ion batteries - Process development and kinetics evaluation". Journal of Cleaner Production 178: 833-845.
  • [20] Golmohammadzadeh Rabeeh, Fariborz Faraji, Fereshteh Rashchi. 2018. "Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acid as leachant reagents: A review". Resources Conservation and Recycling 136: 418-435.
  • [21] Golmohammadzadeh Rabeeh, Fariborz Faraji, Brian Jong, Cristina Pozo-Gonzalo, Parama Chakraborty Banerjee. 2022. "Current challenges and future opportunities toward recycling of spent lithium-ion batteries". Renewable and Sustainable Energy Reviews 159: 112202.
  • [22] „Gotowi na 55", https://www.consilium.europa.eu/pl/policies/green-deal/fit-for-55- the-eu-plan-for-a-green-transition/ (dostęp: 3.03.2023).
  • [23] „Gotowi na 55: zero emisji CO2 z nowych samochodów osobowych i dostawczych w 2035". https://www.europarl.europa.eu/news/pl/press-room/202302101PR74715/gotowi-na-55-zero-emisji-co2-z-nowych-samochodow-osobowych-i-dostawczych-w-2035 (dostęp: 3.03.2023).
  • [24] Goodenough John B., Kyu-Sung Park. 2013. "The Li-Ion Rechargeable Battery: A Perspective". Journal of the American Chemical Society: 135 (4): 1167-1176.
  • [25] Hantanasirisalcul Kanit, Montree Sawangphruk. 2023. "Sustainable Reuse and Recycling of Spent Li-ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives". Global Challenges 2000212.
  • [26] Harper Gavin, Roberto Sommerville, Emma Kendrick, Laura Driscoll, Peter Slater, Rustam Stolkin, Allan Walton, Paul Christensen, Oliver Heidrich, Simon Lambert, Andrew Abbott, Karl Ryder, Linda Gaines, Paul Anderson. 2019. "Recycling lithium-ion batteries from electric vehicles". Nature 575: 75-86.
  • [27] He Li-Po, Shu-Ying Sun, Yan-Yu MU, Xing-Fu Song, Jian-Guo Yu. 2017. "Recovery of Lithium, Nickel, Cobalt, and Manganese form Spent Lithium-Ion Batteries Using L-tartaric Acid as a Leachant". ACS Sustainable Chemistry & Engineering 5 (1): 714-721.
  • [28] Holzer Alexandra, Lukas Wiszniewski, Stefan Windisch-Kern, Harald Raupenstrauch. 2022. "Optimization of a Pyrometallurgical Process to Efficiently Recover Valuable Metals from Commercially Used Lithium-Ion Battery Cathode Materials LCO, NCA, NMC622, and LFP". Metals 12 (10): 1642.
  • [29] "How do Lithium Batteries Work?". https://batteryuniversity.com/learn/article/lithium_based_batteries (dostęp: 3.03.2023)
  • [30] Horeh N. Bahaloo, S. M. Mousavi, S. A. Shojaosadati. 2016. "Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger". Journal of Power Sources 320: 257-266.
  • [31] Jacoby Mitch. 2019. "It's time to get serious about recycling lithium-ion batteries". Chemical & Engineering News 97 (28). https://cen.acs.org/materials/energy-storage/time-serious-recycling-lithium/97/i28 (dostęp: 3.03.2023).
  • [32] Jha Amrita Kumari, Manis Kumar Jha, Anjan Kumari, Sushanta Kumar Sahu, Vinay Kumar, Banshi Dhar Pandey. 2013. "Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant". Separation and Purification Technology 104: 160-166.
  • [33] Lebedeva Natalia, Franco Di Persio, Lois Boon-Brett. 2017. "Lithium ion battery value chain and related opportunities for Europe". Publications Office of the European Union, Luxembourg. https://core.ac.uk/download/pd6154760177.pdf (dostęp: 3.03.2023).
  • [34] Li Li, Ersha Fan, Yibiao Guan, Xiaoxiao Zhang, Qing Xue, Lei Wei, Feng Wu, Renjie Chen. 2017. "Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lacitic Acid Leaching System". ACS Sustainable Chemistry & Engineering 5 (6): 5224-5233.
  • [35] Li Li, Wenjie Qu, X iaoxiao Zhang, Jun Lu, Renjie Chen, Feng Wu, Khalil Amine. 2015. "Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries". Journal of Power Sources 282: 544-551.
  • [36] Li Quan, Ka Yip Fung, Lingda Xu, Christianto Wibowo, Ka Ming Ng. 2019. "Process Synthesis: Selective Recovery of Lithium from Lirhium-lon Battery Cathode Materials". Industrial & Engineering Chemistry Research 58 (8): 3118-3130.
  • [37] Liu Wei, Tobias Placke, K. T. Chau. 2022. "Overview of batteries and battery management for electric vehicles", Energy Reports 8: 4058-4084.
  • [38] Lv Weiguang, Zhonghang Wang, Hongbin Cao, Xiaohong Zheng, Wei Jin, Yi Zhang, Zhi Sun. 2018. "A sustainable process for metal recycling from spent lithium-ion batteries using amonnium chloride". Waste Management 79: 545-553.
  • [39] Makuza Brian, Qinghua Tian, Xueyi Guo, Kinnor Chattopadhyay, Dawei You. 2021. "Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review". Journal of Power Sources 491: 229622.
  • [40] Maroufi Samane, Mohammad Asefi, Rasoul Khayyam Nekouei, Veena Sahajwalla. 2020. "Recovery of lithium and cobalt from waste lithium-ion batteries through a selective isolation-suspension approach". Sustainable Materials and Technologies 23: e00139.
  • [41] Mazurek S. 2020. „Mineralne surowce krytyczne - nowy wykaz komisji europejskiej". https://www.pgi.gov.pl/aktualnosci/display/12526-mineralne-surowce-krytyczne-nowa-lista-komisji-europejskiej.html (dostęp: 3.03.2023).
  • [42] Meng Fei, Qingcai Liu, Rina Kim, Jingxiu Wang, Gui Liu, Ahmad Ghahreman. 2020. ,Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis". Hydrometallurgy 191: 105160.
  • [43] Meshram Pratima, Abhi lash; Banshi Dhar Pandey, Tilak Raj Mankhand, Haci Deveci. 2016. "Comparision of different reductants in leaching of spent lithium ion batteries". JOM 68: 2613-2623.
  • [44] Miao Yu, Patrick Hynan, Annette von Jouanne, Alexandre Yokochi. 2019. "Current Li-ion battery technologies in Electric Vehicles and opportunities for advancements". Energies 12 (6): 1074.
  • [45] Mirza Mateen, Rema Abdulaziz, William C. Maskell, Chun Tan, Paul R. Shearing. 2021. "Recovery of cobalt from lithium-ion batteries using fluidized cathode molten salt electrolysis". Electrochimica Acta 391: 138846.
  • [46] Moosakazemi Farhad, Sina Ghassa, Mohammad Jafari, Saeed Chehreh Chelgani. 2022. "Bioleaching for Recovery of Metals from Spent Batteries -A Review". Mineral Processing and Extractive Metallurgy Review.
  • [47] Mukherjee Susmita, Sharanya Paul, Shreya Bhattacharjee, Somava Nath, Upasana Sharma, Sonali Paul. 2023. Bioleaching od critical metals using microalgae". AIMS Enviromental Science 10 (2): 226-244.
  • [48] Naseri Tannaz, Nazanin Bahaloo-Horeh, Seyyed Mohammad Mousavi. 2019. "Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans". Journal of Environmental Management 235: 357-367.
  • [49 Nayaka G. P., J. Manjanna, K. V. Pai, R. Vadavi, S. J. Keny, V. S. Tripathi. 2015. "Recovery of valuable metal ions form the spent lithium-ion battery using aqueous mixture of mild organic acid as alternative to mineral acids". Hydrometallurgy 151: 73-77.
  • [50] Nayaka G. P., Yingije Zhang, Peng Dong, Ding Wang, Zhongren Zhou, Jianguo Duan, Xue Li, Yan Lin, Qi Meng, K. V. Pai, J. Manjanna, G. Santhosh. 2019. "An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching". Journal of Environmental Chemical Engineering 7: 102854.
  • [51] Nayl A. A., Mostafa M. Hamed, S. E. Rizk. 2015. "Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries". Engineers 55: 119-125.
  • [52] Nowacki Maciej, Adam Mroziński. 2012. „Przykłady procesów recyklingu baterii w Polsce". Inżynieria i aparatura chemiczna 5: 239 - 241.
  • [53] Osial Magdalena, Magdalena Abramowicz, Weronika Urbańska, Magdalena Warczak, Agnieszka Pręgowska. 2022. "Ciecz magnetoreologiczna na bazie tlenków metali oraz sposób jej otrzymywania". Zgłoszenie patentowe nr P.441075 z 30.04.2022.
  • [54] Peng Chao, Joseph Hamuyuni, Benjamin P. Wilson, Mari Lundstrom. 2018. "Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system". Waste Management 76: 582-590.
  • [55] Pinna Eliana, M.C. Ruiz, Manuel W. Ojeda, Mario H. Rodriguez. 2017. "Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors". Hydrometallurgy 167: 66-71.
  • [56] „Przełomowa decyzja europarlamentu. Od 2035 r. nowe auta tylko zeroemisyjne". https://businessinsider.com.pl/wiadomosci/przelomowa-decyzja-europarlamentu-od-2035-r-nowe-auta-tylko-elektryczne/2gln491 (dostęp: 3.03.2023).
  • [57] Rafsanjani-Abbasi Ali, Ehsan Rahimi, Hossein Shalchian, Jalil Vandati-Khaki, Abol-faz113abakhani, Saman Hossienour, Ali Davoodi. 2018. "Recycled Cobalt from Spent Li-ion Batteries as a Superhydrophobic Coating for Corrosion Protection of Plain Carbon Steel". Materials 12 (1): 90.
  • [58] Roy Joseph Jegan, Srinivasan Madhavi, Bin Cao. 2021. "Metal extraction from spent lithium-ion batteries (LiBs) at high pulp density by environmentally friendly bioleaching process". Journal of Cleaner Production 280 (2): 124242.
  • [59] Santana I. L., T. F. M. Moreira, M. F. F. Lelis, M. B. J. G. Freitas. 2017. "Photocatalytic properties of Co3O4/LiCoO2recycled from spent lithium-ion batteries using citric acid as leaching agent". Materials Chemistry and Physics 190: 38-44.
  • [60] Sayilgan E., T. Kukrer, G. Civelekoglu, F. Ferella, A. Akcil, F. Veglio, M. Kitis. 2009. "A review of Technologies for the recovery of metals from spent alkaline and zinc-carbon batteries". Hydrometallurgy 97: 158-166.
  • [61] Scrosati Bruno, Jurgen Garche. 2010. "Lithium batteries: Status, prospects and future". Journal of Power Sources 195: 2419-2430.
  • [62] Sethurajan Manivannan, Stoyan Gaydardzhiev. 2021. „Bioprocessing of spent lithium ion batteries for crtical maetals recovery - A review". Resources, Conservation and Recycling 165: 105225.
  • [63] Sobianowska-Turek Agnieszka, Weronika Urbańiska, Anna Janicka, Maciej Zawiślak, Jędrzej Matta. 2021. The necessity of recycling of waste Li-ion batteries used in Electric Vehicles as objects posing a threat to human health and the environment". Recycling 6 (2): 35.
  • [64] Struk Maciej. 2023. „Parlament Europejski przegłosował zakaz sprzedaży nowych aut spalinowych od 2035 roku. Co to będzie oznaczało dla posiadaczy „nieelektryków"?". https://magazynauto.pl/wiadomosci/pe-przeglosowal-zakaz-sprzedazy-nowych-aut-spalinowych-od-2035-roku-co-to-bedzie-oznaczalo-dla-posiadaczy-nieelektrykow,aid,2872 (dostęp: 3.03.2023)
  • [65] Szczepaniak Włodzimierz, Agnieszka Sobianowska-Turek. 2007. „Odzysk surowców z odpadów baterii: cz. 1 . Baterie cynkowo-manganowe". Recykling 1: 26-27.
  • [66] Szczepaniak Włodzimierz, Agnieszka Sobianowska-Turek. 2007. „Odzysk surowców z odpadów baterii: cz.3. Metody hydrometalurgiczne". Recykling 3: 28-29.
  • [67] Tarascon J. M., M. Armand. 2001. "Issues and challenges facing rechargeable lithium batteries". Nature 414: 359-367.
  • [68] Traore N., S. Kelebek. 2022. "Characteristics of Spent Lithium Ion Batteries and Their Recycling Potential Using Flotation Separation: A Review". Mineral Processing and Extractive Metallurgy Review.
  • [69] „Unijny zakaz sprzedaży nowych samochodów spalinowych od 2035 r. - co to oznacza?". https://www.europarl.europa.eu/news/pl/headlines/economy/20221019S-T044572/unijny-zakaz-sprzedazy-nowych-samochodow-spalinowych-od-2035-r-co-to-oznacza (dostęp: 3.03.2023)
  • [70] Urbańska Weronika, Magdalena Osial, Sławomir Wilczewski. 2022. "Application of the Chemical Leaching Method for the Recovery of Li and Co Contained in Spent Li-Ion Batteries" Environmental Sciences Proceedings 18(1): 12.
  • [71] Urbańska Weronika. 2020. "Recovery of Co, Li, and Ni from Spent Li-Ion Batteries by the Inorganic and/or Organic Reducer Assisted Leaching Method". Minerals 10 (6): 555.
  • [72] Ustawa z dnia 11 stycznia 2018 o elektromobilności i paliwach alternatywnych. Dz. U. z 2022 r. poz. 1083, 1260, 2687.
  • [73] Ustawa z dnia 24 kwietnia 2009 r. o bateriach i akumulatorach. Dz. U. 2009 Nr 79 poz. 666, tj. Dz. U. 2022 poz. 1113.
  • [74] Wang Jianbo, Mengjun Chen, Haiyan Chen, Ting Luo, Zhonghui Xu. 2012. "Leaching study of spent Li-ion batteries". Procedia Environmental Sciences 16: 443-450.
  • [75] Wang Wenqiang, Yu Han, Tao Zhang, Lei Zhang, Shengming Xu. 2019. Alkali Metal Salt Catalyzed Carbothermic Reduction for Sustainable Recovery of LiCoO2: Accurately Controlled Reduction and Efficient Water Leaching". ACS Sustainable Chemistry & Engineering 7 (19): 16729-16737.
  • [76] Windisch-Kem Stefan, Eva Gerold, Thomas Nigl, Aleksander .landric, Michael Altendorfer, Bettina Rutrecht, Silvia Scherhaufer, Harald Raupendtrauch, Roland Pomberger, Helmut Antrekowitsch, Florian Part. 2022. "Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies". Waste Management 138: 125-139.
  • [77] „Wyzwania dla elektromobilności". https://przemysl isrodowisko.pl/wyzwania-dla-elektromobilnosci/ (dostęp: 3.03.2023).
  • [78] Xiao Jiefeng, Jia Li, Zhengming Xu. 2017. "Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy". Journal of Hazardous Materials 338:124-131.
  • [79] Xin Yayun, Xingming Guo, Shi Chen, Jing Wang, Feng Wu, Baoping Xin. 2016. "Bioleaching of valuable metals Li, Co, Ni I Mn from spent electric vehicle Li-ion batteries for the purpose of recovery". Journal of Cleaner Production 116: 249-258.
  • [80] Yanamandra Kaushik, Dinesh Pinisetty, Atef Daoud, Nikhil Gupta. 2022. "Recycling of Li-ion and Lead-Acid Batteries: A review". Journal of the Indian Institute of Science 102: 281-295.
  • [81] Yao Yonglin, Meiying Thu, Zhuo Mao, Bihai Tong Youqi Fan, Zhongsheng Hua. 2018. "Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review". ACS Sustainable Chemistry& Engineering 6: 13611-13627.
  • [82] Yu Xiaolu, Weikang Li, Varun Gupta, Hongpeng Gao, Duc Tran, Shatila Sarwar, Zheng Chen. 2022. "Current Challenges in Efficient Lithium-Ion Batteries' Recycling: A Perspective". Global Challenges 6 (12): 2200099.
  • [83] Zeng Xianlai, Anhui Li, Bingyou Shen. 2015. "Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid". Journal of Hazardous Materials 295: 112-118.
  • [84] Zheng Xiaohong, Zewen Thu, Xiao Lin, Yi Zhang, Yi He, Hongbin Cao, Zhi Sun. 2018. "A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries". Engineering 4 (3): 361-370.
  • [85] Zheng Ying, Wei Song, Wen-ting Mo, Lai Thou, Jian-Wen Liu. 2018. "Lithium fluoride recovery from cathode material of spent lithium-ion battery". RSC Advances 8: 8990-8998.
  • [86] Thou Mingxian, Bang Li, Jia Li, Zhenming Xu. 2021. “Pyrometallurgical Technology in the Recycling of a Spent Lithium Ion Battery: Evolution and the Challenge". ACS ES&T Engineering 1 (10): 1369-1382.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81f9807f-7ed3-41cf-9b90-1fc3bd431d44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.