PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Nanoindentation Rate on Plastic Deformation in Cu Thin Films

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper investigates the nanoindentation process with different rates in the Cu (001) of FCC system. The indentation process was done using molecular dynamics simulation based on the embedded atom method theory and Morse potential. Simulation process of indentation used a rigid spherical indenter with the diamond structure. To structure characterization we applied the adaptive common neighbour and the dislocation extraction analysis. It was found that the range of the linear change of the indentation force depends on the rate of response of the system. The initial range of the linear dependence of stress evolution also depends on the rate of indentation. Moreover, the average total normal stress in the system is only compressive. After linear changes, we observe oscillating changes in stress evolution. During indentation, for the range of linear changes of stress, dislocations aggregated only around the indenter surface. The creation of dislocations is directly connected with the structural changes. The structure analysis revealed the formation of HCP and BCC structure in the Cu (001) of FCC systems and a correlation with the creation of dislocations.
Twórcy
  • Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
  • Department of Computer Science, Lublin University of Technology, ul. Nadbystrzycka 36B, 20-618 Lublin, Poland
Bibliografia
  • 1. Kumar A., Ahluwalia P.K. Semiconductor to metal transition in bilayer transition metals dichalcogenides MX2 (M= Mo, W; X= S, Se, Te). Modelling and Simulation in Materials Science and Engineering. 2013; 21(6): 065015.
  • 2. Xie Z., Hui L., Wang J., Zhu G.A., Chen Z., Li C. Electronic and optical properties of monolayer black phosphorus induced by bi-axial strain. Computational Materials Science. 2018; 144: 304–314.
  • 3. Valdes N., Lee J., Shafarman W. Comparison of Ag and Ga alloying in low bandgap CuInSe2-based solar cells. Solar Energy Materials and Solar Cells. 2019; 195: 155–159.
  • 4. Chen L., Liu Y., Yang K., Lan P., Cui Y., Luo H., Liu B., Gao Y. Theoretical study of the electronic and optical properties of rare-earth (RE=La, Ce, Pr, Nd, Eu, Gd, Tb)-doped VO2 nanoparticles. Computational Materials Science. 2019; 161: 415–421.
  • 5. Zhong Y., Xia X., Shi F., Zhan J., Tu J., Fan H.J. Transition metal carbides and nitrides in energy storage and conversion. Advanced Science. 2016; 3(5): 1500286.
  • 6. Gunther E., Mehling H., Hiebler S. Modeling of subcooling and solidification of phase change materials. Modelling and Simulation in Materials Science and Engineering. 2007; 15(8): 879–892.
  • 7. Yan C., Hao L., Hussein A., Young P., Huang J., Zhu W. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Materials Science and Engineering: A. 2015; 628: 238–246.
  • 8. Kiely J.D., Houston J.E. Nanomechanical properties of Au (111), (001), and (110) surfaces. Physical Review B. 1998; 57: 12588–12594.
  • 9. Chocyk D., Zientarski T. Molecular dynamics simulation of Ni thin films on Cu and Au under nanoindentation. Vacuum. 2018; 47: 24–30.
  • 10. Saillard A., Cherkaoui M., El Kadiri H. Stress-induced roughness development during oxide scale growth on a metallic alloy for SOFC interconnects. Modelling and Simulation in Materials Science and Engineering. 2010; 19(1): 015009.
  • 11. Singh M., Sridhara B.K., Shridhar T.N. Studies on nanostructure aluminium thin film coatings deposited using DC magnetron sputtering process. Materials Science and Engineering Conference Series. 2016; 149(1): 012071–012080.
  • 12. Demas N.G., Lorenzo-Martin C., Ajayi O.O., Erck R.A., Shareef I. Measurement of Thin-film Coating Hardness in the Presence of Contamination and Roughness: Implications for Tribology. Metall. Mater. Trans. A. 2016; 47: 1629–1640.
  • 13. DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Zhang W. Additive manufacturing of metallic componentsprocess, structure and properties. Progress in Materials Science. 2018; 92: 112–224.
  • 14. Lewandowski J.J., Seifi M. Metal additive manufacturing: a review of mechanical properties. Annual Review of Materials Research. 2016; 46: 151–186.
  • 15. Liu J., Liang T., Lai W., Liu Y. Morphology evolution and defect distribution in irradiated graphite from molecular dynamics. Computational Materials Science. 2018; 155: 246–255.
  • 16. Deng L., Zhao J., Wang Z. Estimation of residual stress of metal material with yield plateau by continuous spherical indentation method. Materials Research Express. 2020; 7(3): 036537.
  • 17. Valencia F.J., Benjamín Pinto B., Kiwi M., Ruestes C.J., Eduardo M. Bringae E.M., Rogan J. Nanoindentation of polycrystalline Pd hollow nanoparticles: Grain size role. Computational Materials Science. 2020; 179: 109642.
  • 18. Zahabi S., Nouri N., Ziaei-Rad S., Talaei M.S. Effect of iron bicrystal orientation on mechanical properties and dislocation density using molecular dynamics simulations of nanoindentation. Mechanics of Advanced Materials and Structures. 2020. DOI: 10.1080/15376494.2020.1813854.
  • 19. Chavoshi S.Z., Xu S. Twinning effects in the single/ nanocrystalline cubic silicon carbide subjected to nanoindentation loading. Materialia. 2018; 3: 304–325.
  • 20. Gerberich W., Nelson J., Lilleodden E., Anderson P., Wyrobek J. Indentation induced dislocation nucleation: the initial yield point. Acta Mater. 1996; 44(9): 3585–3598.
  • 21. Deng L., Liu Q., Wang X., Li J. Load drop and hardness drop during nanoindentation on singlecrystal copper investigated by molecular dynamics. Applied Physics A: Materials Science & Processing. 2018; 124(11): 743.
  • 22. Zhao K., Mayer A.E., He J., Zhang Z. 2Dislocation based plasticity in the case of nanoindentation. International Journal of Mechanical Sciences. 2018; 148: 158–173.
  • 23. Luu H.T., Dang S.L., Hoang T.V., Gunkelmann N. Molecular dynamics simulation of nanoindentation in Al and Fe: On the influence of system characteristics. Applied Surface Science. 2021; 551: 149221–149234.
  • 24. Pham V.T., Fang T.H. Interfacial mechanics and shear deformation of indented germanium on silicon (001) using molecular dynamics. Vacuum. 2020; 173: 109184–109196.
  • 25. Li Y., Goyal A., Chernatynskiy A., Jayashankar J.S., Kautzky M.C., Sinnott S.B., Phillpot S.R. Nanoindentation of gold and gold alloys by molecular dynamics simulation. Mater. Sci. Eng. A. 2016; 651: 346–357.
  • 26. Fu T., Peng X., Zhao Y., Feng Ch., Huang Ch., Li Q., Wang Z. MD simulation of effect of crystal orientations and substrate temperature of growth of Cu/Ni bilayer films. Applied Physics A: Materials Science & Processing. 2016; 122: 67–75.
  • 27. Chamani M., Farrahi G.H., Movahhedy M.R. Molecular dynamics simulation of nanoindentation of nanocrystalline Al/Ni multilayers. Computational Materials Science. 2016; 112: 175–184.
  • 28. Abdulkadir L.N., Abou-El-Hossein K., Jumare AI., Liman M.M., Olaniyan T.A., Odedeyi P.B. Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining. The International Journal of Advanced Manufacturing Technology. 2018; 98(1–4): 317–371.
  • 29. Kelchner C.L., Plimpton S.J., Hamilton J.C. Dislocation nucleation and defect structure during surface indentation. Physical Review B. 1998; 58(17): 11085–11088.
  • 30. Li J., Van Vliet K.J., Zhu T., Yip S., Suresh S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature. 2002; 418(6895): 307–310.
  • 31. Lilleodden E.T., Zimmerman J.A., Foiles S.M., Nix W.D. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. Journal of the Mechanics and Physics of Solids. 2003; 51(5): 901–920.
  • 32. Zhu T., Li J., Van Vliet K.J., Ogata S., Yip S., Suresh S. Predictive modeling of nanoindentationinduced homogeneous dislocation nucleation in coppe. Journal of the Mechanics and Physics of Solids. 2004; 52(3): 691–724.
  • 33. Van Vliet K.J., Li J., Zhu T., Yip S., Suresh S. Quantifying the early stages of plasticity through nanoscale experiments and simulations. Physical Review B. 2003; 67(10): 104105.
  • 34. Miller R.E., Acharya A. A stress-gradient based criterion for dislocation nucleation in crystals. Journal of the Mechanics and Physics of Solids. 2004; 52(7): 1507–1525.
  • 35. Minor A.M., Lilleodden E.T., Stach E.A., Morris J.W. Direct observations of incipient plasticity during nanoindentation of Al. Journal of Materials Research. 2004; 19(1): 176–182.
  • 36. Minor A.M., Asif S.S., Shan Z., Stach E.A., Cyrankowski E., Wyrobek T.J., Warren O.L. Warren, A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 2006; 5(9): 697–702.
  • 37. Schuh C.A., Mason J.K., Lund A.C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Materials. 2005; 4(8): 617–621.
  • 38. Mason J.K., Lund A.C., Schuh C.A. Determining the activation energy and volume for the onset of plasticity during nanoindentation. Physical Review B. 2006; 73(5): 054102.
  • 39. Schuh C.A. Nanoindentation studies of materials. Mater. Today. 2006; 9(5): 32–40.
  • 40. Stukowski A., Bulatov V.V., Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering. 2012; 20(8): 085007.
  • 41. Honeycutt J.D., Andersen H.C. Molecular dynamics study of melting and freezing of small LennardJones clusters. Journal of Physical Chemistry. 1987; 91(19): 4950–4963.
  • 42. Zhou X.W., Johnson R.A., Wadley H.N.G. Misfitenergy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B. 2004; 69: 144113–144123.
  • 43. Chang W., Fang T., Lin S., Huang J. Nanoindentation response of nickel surface using molecular dynamics simulation. Molcular Simulation. 2010; 36: 815–822.
  • 44. Hsieh J., Ju S., Li S., Hwang C. Temperature dependence in nanoindentation of a metal substrate by a diamond like tip. Physical Review B. 2004; 70: 195424.
  • 45. Promyoo R., El-Mounayri H., Varahramyan K. AFM-Based Nanoindentation Process: A Comparative Study. In: ASME 2012 International Manufacturing Science and Engineering Conference, Notre Dame, Indiana USA. June 4–8. 2012; 869–878.
  • 46. Yu Gao Y., Ruestes C.J., Tramontina D.R., Urbassek H.M. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. Journal of the Mechanics and Physics of Solids. 2015; 75: 58–75.
  • 47. Basinski Z.S., Duesberry M.S., Taylor R. Influence of shear stress on screw dislocations in a model sodium lattice. Can. J. Phys. 1971; 49: 2160–2180.
  • 48. Schuh C.A., Argon A.S., Nieh T.G., Wadsworth J. The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philosophical Magazine A. 2003; 83(22): 2585–2597.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81efe16c-1c9f-42d8-89ae-bd48c9936b12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.