Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of experimental studies aimed at determining constitutive parameters for selected constitutive equations of flow stress as a function of the natural aging time of 2 mm thick AlCu4Mg1 (AW-2024) sheet. The knowledge of these constitutive parameters as a function of aging time is necessary to analyze and model the processes of forming sheet metal stampings after heat treatment during natural aging. The constitutive parameters in individual constitutive equations were determined on the basis of the approximation of the course of strain hardening curves. The courses of these curves for the tested natural aging times in the range of 0-120 minutes after heat treatment were made on the basis of uniaxial stretching tests of samples taken in the directions of 0, 45 and 90 degrees to the direction of sheet rolling. The values of constitutive parameters as a function of natural aging time were determined for four popular models of flow stress: Hollomon, Swift, Voce and El-Magd. Moreover, the relationship between the natural aging time and the value of the yield strength in the tested aging time range was determined, and the accuracy of the investigated constitutive equations for describing the course of the flow stress of the tested sheet material was assessed on the basis of the analysis of approximation errors.
Wydawca
Rocznik
Tom
Strony
216--229
Opis fizyczny
Bibliogr. 17 poz., fig., tab.
Twórcy
autor
- Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
- 1. Polmear I. Light alloy – from traditional alloys to nanocrystals. Butterworth-Heinemann, Oxford, 2006.
- 2. Davies G. Materials for automobile bodies. Butterworth-Heinemann, Oxford, 2003.
- 3. Kučera V., Vojtěch D. Influence of the heat treatment on corrosion behavior and mechanical properties of the AA 7075 alloy. Manufacturing Technology. 2017; 17: 747–752.
- 4. Miller W.S., Zhuang L., Bottema J., Wittebrood A.J., Smet P.D., Haszler A. et al. Recent development in aluminium alloys forthe automotive industry. Composites Science and Technology. 2000; 280(1): 37–49.
- 5. May A., Belouchrani M.A., Taharboucht S., Boudras A. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated. Procedia Engineering. 2010; 2: 1795–1804.
- 6. Sun S., Fang Y., Zhang L., Li C., Hu S. Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024 aluminium alloy using SR-CT. Journal of Materials Research and Technology. 2020; 9: 3219–3229.
- 7. ASM Handbook. Heat Treating of Aluminum Alloys. ASM Handbook Committee 1991; 4: 841–879. DOI: 10.1361/asmhba0001205
- 8. Przybyłowicz K. Metaloznawstwo. WNT Warszawa, 2007. (in Polish)
- 9. Sobotka J., Solfronk P., Kolnerova M., Korecek D. Influence of technological parameters on ageing of aluminium alloy AW-2024. Manufacturing Technology. 2018; 18(6): 1023–1028.
- 10. Fallah Tafti M., Sedighi M., Hashemi R. Effects of natural ageing treatment on mechanical, microstructural and forming properties of Al 2024 aluminum alloy sheets. Iranian Journal of Materials Science & Engineering. 2018; 15(4): 1–10. DOI: 10.22068/ijmse.15.4.1
- 11. EN 573-3. Aluminium and aluminium alloys – Chemical composition and form of wrought products – Part 3: Chemical composition and form of products. 2007: 9.
- 12. AMS2770. Heat Treatment of Wrought Aluminum Alloy Parts, Rev. 2015-09.
- 13. Hollomon J.H. Tensile deformation. Trans. AIME. 1945; 162: 268.
- 14. Swift H.W. Plastic instability under plane stress. Journal of the Mechanics and Physics of Solids. 1952; 1(1): 1–18.
- 15. Voce E. The relationship between stress and strain for homogeneous deformations. Journal of the Institute of Metals. 1948; 74: 537–562.
- 16. Stiebler K., Kunze H.-D., El-Magd E. Description of the flow behaviour of a high strength austenitic steel under biaxial loading by a constitutive equation. Nuclear Engineering and Design. 1991; 127(1): 85–93.
- 17. Sener B., Yurci M. E. Comparison of quasi-static constitutive equations and modeling of flow curves for austenitic 304 and ferritic 430 stainless steels. Acta Physica Polonica A. 2017; 131(3): 605–607.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81ec9d61-5379-4dcc-8a57-aa993595bea1