PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hierarchical cycles in the modern power system – exergy analysis under partial loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to investigate thermodynamic efficiency of hierarchical thermodynamic cycles under partial loads by using of exergy analysis. Advanced hierarchical cycles are composed of few energy conversion systems, which can be powered by several different sources of energy jointly. This kind of cooperation gives opportunities to provide high efficient and clean conversion of fossil fuels to electricity. Moreover, power plant consisting of few traditional power system gives new possibilities of optimization under partial loads.
Słowa kluczowe
Rocznik
Tom
Strony
3--23
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Conjoint Doctoral School at the Faculty of Mechanical Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Conjoint Doctoral School at the Faculty of Mechanical Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Conjoint Doctoral School at the Faculty of Mechanical Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Akber P., Sanjeev J.: Combined cycle heat recovery steam generators optimum capabilities and selection criteria. Heat Recovery Systems and CHP 15(1995), 2, 147–154.
  • [2] Bao J., Zhao L.: A review of working fluid and expander selections for organic Rankine cycle. Renew. Sust. Energ. Rev. 24(2013), 325–342.
  • [3] Badur J.: Numerical Modeling of Sustainable Combustion at Gas Turbine. IMP PAN Publishers, Gdańsk 2003 (in Polish).
  • [4] Badur J., Lemański M., Ziółkowski P., Kaczmarczyk O.: Numerical analysis of the operating parameters of supercritical thermal cycle in power plant Jaworzno III with heat recovery system ORC. Rep IFFM PASci 4/2012, Gdańsk 2012 (in Polish).
  • [5] Bracco S., Siri S.: Exergetic optimization of single level combined gassteam power plants considering different objective functions. Energy 35(2010), 5365–5373.
  • [6] Bartela Ł., Skorek-Osikowska A., Kotowicz J.: Integration of supercritical coal-fired heat and power plant with carbon capture installation and gas turbine. Rynek Energii 3(2012), 56–62 (in Polish).
  • [7] Bartnik R.: The Modernization Potential of Gas Turbine in the Coalfired Power Industry: Thermal and Economic Effectiveness. Springer- Verlag, London 2013.
  • [8] Bartnik R.: Thermodynamic fundamentals for production of electric power in hierarchical j-cycle system. Transactions IFFM 126(2014), 141–151.
  • [9] Choudhury A., Chandra H., Arora A.: Application of solid oxide fuel cell technology for power generation – A review. Renew. Sust. Energ. Rev. 20(2013), 430–442.
  • [10] Dev N., Kachhwaha S.S, Attri R.: Exergy analysis and simulation of a 30 MW cogeneration cycle. Front. Mech. Eng. 8(2013), 2, 169–180.
  • [11] Domachowski Z.: Automatic adjustment of turbo generators. GUT Publishing House, Gdańsk 2011 (in Polish).
  • [12] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Text with EEA relevance L334/17, 17.12.2010.
  • [13] Dzida M.: On the possible increasing of efficiency of ship power plant with the system combined of marine diesel engine, gas turbine and steam turbine, at the main engine – steam turbine mode of cooperation. Pol. Marit. Res. 16(2009), 1 , 47–52.
  • [14] Dzida M., Giltler J., Dzida S.: On the possible increasing of efficiency of ship power plant with the system combined of marine diesel engine, gas turbine and steam turbine in case of main engine cooperation with the gas turbine fed in series and the steam turbine. Pol. Marit. Res. 16(2009), 3, 26–31.
  • [15] Piasecka M.: An application of enhanced heating surface with minirecesses for flow boiling research in minichannels. Heat Mass Transfer 49(2013), 261–271.
  • [16] Feidt M.: Thermodynamics of energy systems and processes: A Review and perspectives. J. Appl. Fluid Mech. 5(2012), 2, 85–98.
  • [17] Goliński J., Jesionek K.: Air-steam power plants. IMP PAN Publishers, Gdańsk 2009.
  • [18] Jesionek K., Chrzczonowski A., Ziółkowski P., Badur J.: Power enhancement of the Brayton cycle by steam utilization. Arch. Thermodyn. 33(2012), 3, 39–50.
  • [19] Kasper U., Schäfer A., Ketov M., Moser A.: Impact of modelling approaches on dispatch optimization of combined cycle gas turbines. Energiewirtsch 36(2012), 205–212.
  • [20] Kowalczyk T., Badur J.: Logistical aspects of energy conversion efficiency in marine steam power plants in off-design conditions. Logistyka, 4(2014), 4510–4517 (CD-ROM, 6).
  • [21] Kowalczyk T., Głuch J., Badur J., Ziółkowski P.: Technical analysis of the preferred thermodynamic cycles of mobile high temperature nuclear power plants. Sci. Lett. Rzeszow University of Technology, Mechanics, RUTMech, 86(2014), 1, 35–43 (in Polish).
  • [22] Kozłów P., Badur J.: Exergetic analysis of distributed energy systems. Systems 11(2006), 329–360 (in Polish).
  • [23] Le V.L., Feidt M., Kheiri A., Pelloux-Prayer S.: Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids. Energy 67 (2014), 513–526.
  • [24] Lemański M., Badur J.: Parametrical analysis of a tubular pressurized SOFC. Arch. Thermodyn. 25(2004), 1, 53–72.
  • [25] Lemański M., Karcz M.: Performance of lignite-syngas operated tubular Solid Oxide Fuel Cell. Chem. Process Eng. 23(2007), 1–24.
  • [26] Lemański M., Topolski J., Badur J.: Analysis strategies for gas turbine – solid oxide fuel cell hybrid cycles. Technical, economical and environmental aspects of combined cycles power plants, (Domachowski, Ed.) GUT Publishing House, Gdańsk 2004.
  • [27] Marinchenko T.M, Zubtsov V.M.: The injection of alkali metal into a turbulent flow of inert gas for developing the working medium of a nonequilibrium MHD generator. High Temp. 40(2002), 3, 469–476.
  • [28] Mikielewicz D., Barleta Ł., Ziółkowski P., Wajs J., Mikielewicz J.: Operation of the 900 MW power plant with the ORC supplied from three heat sources. Aktualne Zagadnienia Energetyki, Tom II (Wójs and Szulc, Eds.) Wrocław University of Technology Press, Wrocław 2014, 327-342.
  • [29] Mikielewicz D., Mikielewicz J.: A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Appl. Therm. Eng. 30(2010), 2357–2362.
  • [30] Mikielewicz D., Ziółkowski P., Wajs J., Mikielewicz J.: Combined operations of 900 MW power plant with the ORC through the bleed steam extraction point and CO2 recovery system. In: Heat Transfer and Renewable Sources of Energy 2014, Publishing House ofWest Pomeranian University of Technology, Szczecin 2014, 380–386.
  • [31] Mikielewicz J.: On perspective ideas of future turbines by prof. Robert Szewalski. Proc. of a Jubilee Session devoted to 100th Anniversary of Birthday of Prof. Robert Szewalski, Gdańsk 2002 (in Polish).
  • [32] Miller A., Lewandowski J.: Steam turbines under variable operating conditions. WUT Publishing House, Warsaw 1992.
  • [33] Perycz S.: Gas and steam turbines. GUT Publishing House, Gdańsk 1988 (in Polish).
  • [34] Poullikkas A.: An overview of current and future sustainable gas turbine technologies. Renew. Sust. Energ. Rev. 9(2005), 409–443.
  • [35] Rosyid H., Koestoer R., Putra N., Nasruddin, Mohamad, Yanuar A.: Sensitivity analysis of steam power plant-binary cycle. Energy 35(2010), 3578–3586.
  • [36] Shin J.Y., Jeon Y.J., Maeng D.J., Kim J.S., Ro S.T.: Analysis of the dynamic characteristics of a combined-cycle power plant. Energy 27(2002), 1085–1098.
  • [37] Szargut J., Petela R.: Exergy. PWN, Warsaw 1964 (in Polish).
  • [38] Szewalski R.: Actual problems of development of energetical technology. Enhancement of unit work and efficiency turbine and power unit. Ossolineum, Wrocław 1978 (in Polish)
  • [39] Szewalski R.: The binary vapour turbine set of great output, it’s concept and some basic engineering problems. Transactions IFFM 42-44(1969), 119–140.
  • [40] Vasenin I. M.,Vasenina T. V., Glazunov A. A.: Gas-dynamic processes in two-phase flows in MHD generators. J. App. Mech. Tech PH 44(2003), 3, 312–316.
  • [41] Vélez F., Segovia J.J., Martín M.C., Antolín G., Chejne F., Quijano A.: A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renew. Sust. Energ. Rev. 16(2012), 6, 4175–4189.
  • [42] Yeager K.: Pressurized fluidized-bed combustion. EPRI J. 8(1983), 5.
  • [43] Ziółkowski P., Badur J.: Clean gas technologies - towards zero-emission repowering of Pomerania. Transactions IFFM 124(2014), 51–80.
  • [44] Ziółkowski P., Zakrzewski W., Kaczmarek O., Badur J.: Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2. Arch. Thermodyn. 34(2013), 2, 23–38.
  • [45] Ziółkowski P., Hernet J., Badur J.: Revalorization of the Szewalski binary vapour cycle. Arch. Thermodyn. 35(2014), 3, 225–249.
  • [46] Ziółkowski P., Mikielewicz D.: Thermodynamic analysis of the supercritical 900 MWe power unit, co-operating with an ORC cycle. Arch. Energ. 32(2012), 2, 165–174 (in Polish).
  • [47] Ziółkowski P., Mikielewicz D., Mikielewicz J.: Increase of power and efficiency of the 900 MW supercritical power plant through incorporation of the ORC. Arch. Thermodyn. 34(2013), 4, 51–71.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81eb350e-0c86-46e5-beec-44aafb510ed2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.