Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Worldwide, studies are still being made to enhance the radiometric performance of the MTV composition, i.e. a composition of magnesium (Mg), polytetrafluoroethylene (PTFE, commonly called “teflon”) and Viton®, used in infrared (IR) decoy flares. In this study, the Mg fuel was replaced to modify the radiometric performance of the baseline MTV composition in terms of IR intensity and/or linear burn rate, along with the IR intensity ratio. To partially replace Mg, the fuels used were alloys: magnalium (Mg-aluminium (Al), 50:50) and boron Al ligature (BAL), a non-metal: silicon (Si), and organic fuels: 1,5-dinitronaphthalene (1,5-DNN) and 4-phenylazophenol (4-PAP). Composition batches of 100 g were prepared by replacing the Mg fuel, ranging from 5 to 25 wt.%, in the baseline MTV composition. The IR intensity in the 1.8-2.6 and 3-5 μm wavebands versus burn time was measured using a dual-band radiometer. The calorific value (Cal-Val), impact, friction and spark sensitivity measurements were obtained for all of the compositions. It was found that the IR intensities obtained were highest with the replacement by Magnalium, while those with organic fuels were the lowest. The maximum IR intensity was obtained at 5 wt.% replacement with Magnalium, which is 28.5% higher in the 1.8-2.6 μm range and 21.1% in the 3-5 μm range, and the linear burn rate was 9.8% lower than the baseline MTV composition. The IR intensity ratio was the lowest at 0.97 when 20% 4-PAP was partially replaced in the baseline MTV composition. The REAL thermochemical code was used to predict various equilibrium parameters of the MTV compositions. The thermochemical data was correlated with the spectral plot of the MTV compositions obtained by using an SR-5000N IR radiometer.
Rocznik
Tom
Strony
141--165
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- High Energy Materials Research Laboratory, Sutarwadi, Pune, India
- Defence Institute of Advanced Technology, Girinagar, Pune, India
autor
- High Energy Materials Research Laboratory, Sutarwadi, Pune, India
autor
- High Energy Materials Research Laboratory, Sutarwadi, Pune, India
autor
- High Energy Materials Research Laboratory, Sutarwadi, Pune, India
autor
- Defence Institute of Advanced Technology, Girinagar, Pune, India
Bibliografia
- [1] Titterton, D.H. Development of Infrared Countermeasure Technology and Systems. In: Mid-Infrared Semiconductor Optoelectronics. (Krier, A., Ed.) Springer, London, 2007.
- [2] Koch, E.C. Review of Pyrotechnic Aerial Infrared Decoys. Propellants Explos. Pyrotech. 2001, 26(1): 3-11; https://doi.org/10.1002/1521-4087(200101)26:1<3::AID-PREP3>3.0.CO;2-8.
- [3] Kuwahara, T.; Toshinobu, O. Burning Rate of Mg/TF Pyrolants. Proc. 18th Int. Pyrotechnic Semin. 1992, pp. 539-548.
- [4] Kuwahara, T.; Matsuo, S.; Shinozaki, N. Combustion and Sensitivity Characteristics of Mg/TF Pyrolants. Propellants Explosives and Pyrotechnics 2004, 22(4): 198-202: https://doi.org/10.1002/prep.19970220403.
- [5] Miyake, A.; Kitoh, K.; Ogawa, T.; Watanabe, M.; Kazama, N.; Tsuji, S. Combustion Performance and Safety Evaluation of Mg/PTFE Pyrotechnic Compositions. Proc. 19th Int. Pyrotechnic Semin. 1994, pp. 124-134.
- [6] Xue, W.; Gongpei, P.; Yi, L. The Influence of PTFE Effective Mass Flow Rate on 3-5μ Radiant Intensity in Mg/PTFE/BaO2 Infrared Pyrotechnic Composition. Proc. 24th Int. Pyrotechnic Semin. 1998, pp. 607-612.
- [7] Boulanger, R.; Souil, J.M.; Gillard, P.; Roux, M.; Espangnacq, A. Emission Spectral Computation for Pyrotechnic Applications. Proc. 24th Int. Pyrotechnic Semin. 1998, pp. 71-84.
- [8] Deyong, L.V.; Smit, K.J. A Theoretical Study on the Combustion of MTV Pyrotechnic Compositions. DSTO Technical Report, MRL-TR-91-25, 1991.
- [9] Deyong, L.V.; Griffiths, T.T. The Use of Equilibrium and Kinetic Computer Programs to Study the Combustion of MTV Formulations. Proc. 19th Int. Pyrotechnic Semin. 1994, pp. 1-17.
- [10] Brunet, L.; Forichon-Chaumet, N.; Lombard, J.M.; Espangnacq, A. Modelisation of Combustion Equilibria with Monte-Carlo Numerical Methods. Propellants Explos. Pyrotech. 1997, 22(6): 311-313; https://doi.org/10.1002/prep.19970220602.
- [11] Webb, R. Possible Application for Computer Codes in the Development of Pyrotechnic Compositions. J. Pyrotech. 1998, 7: 74-75.
- [12] Yarrington, C.D.; Son, S.F.; Foley, T.J. Combustion of Silicon/Teflon/Viton and Aluminum/Teflon/Viton Energetic Composites. J. Propul. Power 2010, 26(4): 734-743; https://doi.org/10.2514/1.46182.
- [13] Wang, Y.K.; Zhang, M.X.; Liu, F.F.; Tang, J.S.; Zhu, C.G. Effect of Mg-Al Ratio on the Combustion and Infrared Radiation Properties of Al-Mg Alloy/PTFE Composition. J. Phys.: Conf. Ser. 2023, 2478(3) paper 032023; https://doi.org/10.1088/1742-6596/2478/3/032023.
- [14] Toan, N.T.; Cam, N.N.T. Effects of Mg-Al Alloy Powder on the Combustion and Infrared Emission Characteristics of the Mg-Al/PTFE/Viton Composition. Def. Sci. J. 2020, 70(6): 590-595; https://doi.org/10.14429/dsj.70.15522.
- [15] Elbasuney, S.; Elmotaz, A.A.; Sadek, M.A.; Yehia, M.; Tantawy, H. Superior Spectral Performance of Decoy Flares Compositions via the Inclusion of Graphite as a Black Body Emitter. IOP Conf. Ser.: Mater. Sci. Eng. 975 2020, paper 012005, 1-13; https://doi.org/10.1088/1757-899X/975/1/012005.
- [16] Nguyen, N.S.; Dam, Q.S.; Nguyen, V.T. Effects of Iron(III) Oxide Nanoparticles on the Burning Characteristics of the Pyrotechnic Composition for Infrared Emission Based on Magnesium-Teflon-Viton. J. Sci. Tech. 2023, 1(1): 65-76; https://doi.org/10.56651/lqdtu.jst.v1.n01.630.pce.
- [17] Elsaidy, A.; Kassem, M.; Tantawy, H.; Elbasuney, S.; Gaber, Z.M. Infrared Spectra of Aluminium Fluorocarbon Polymer Compositions to Thermal Signature of Jet Engine. Res. J. Mater. Sci. 2018, 6(3): 189-197; https://doi.org/10.4172/2321-6212.1000232.
- [18] Brune, N. Expendable Decoys. In: The Infrared and Electro-Optical Systems Handbook, 7, Countermeasure Systems. (Accetta, J.S.; Shumaker, D.L., Eds.) SPIE Optical Engineering Press, Bellingham, 1996, pp. 289-321.
- [19] Debnath, S.; Rej, P.; Kumar, H.; Jain, S.; Banerjee, S. A Computational Model for Prediction of IR Intensity and Burn Time of Magnesium-Teflon-Viton (MTV) Based Infrared (IR) Decoy Flare of Various Configurations. J. Infrared Phys. Technol. 2025, 145 paper 105651; https://doi.org/10/1016/j.infrared.2024.105651.
- [20] Belov, G.V. Computer Simulations of Complex Chemical Equilibrium at High Pressure and Temperature, REAL Version 2.2. Moscow, 1999.
- [21] Volk, F.; Bathell, H. User’s Manual for ICT-Thermodynamic Code, 1. ICT-Report 14/88, Pfinztal, Germany, 1988.
- [22] Volk, F.; Bathell, H. User’s Manual for ICT-Thermodynamic Code, 2. ICT-Report 1/91, Pfinztal Germany, 1991.
- [23] Volk, F.; Bathell, H. User’s Manual for ICT-Thermodynamic Code, 3. ICT-Report 2/91, Pfinztal Germany, 1991.
- [24] Koch, E.-C. Pyrotechnic Countermeasures: II. Advanced Aerial Infrared Countermeasures, Propellants Explos. Pyrotech. 2006, 31(1): 3-19; https://doi.org/10.1002/prep.200600001.
- [25] Zhang, R.F.; Zhang, S.H.; He, Z.J.; Jing, J.; Sheng, S.H. Miedema Calculator: A Thermodynamic Platform for Predicting Formation Enthalpies of Alloys within the Framework of Miedema’s Theory. Comput. Phys. Commun. 2016, 209: 58-69; https://doi.org/10.1016/j.cpc.2016.08.013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81d8bee8-c30d-4d36-8168-1c787613e0e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.