PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solid-liquid interface morphology of white carbide eutectic during directional solidification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the analysis of solid-liquid interface morphology in white carbide eutectic was made. In a vacuum Bridgman-type furnace, under an argon atmosphere, directionally solidified sample of Fe - C alloy was produced. The pulling rate was v = 125 μm/s (450 mm/h) and constant temperature gradient G = 33.5 K/mm. The microstructure of the sample was frozen. The microstructure of the sample was examined on the longitudinal section using an light microscope and scanning electron microscope.
Twórcy
  • UTP University of Science and Technology, Faculty of Mechanical Engineering, Department of Materials Science and Engineering, 7. S. Kaliskiego Av., 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] P. Magnin, R. Trivedi, Acta Metall. Mater. 39, 44, 453-467 (1991).
  • [2] R. Hu, X. Bi, J. Li, H. Fu, Interface morphology evolvement and microstructure characteristics of hypoetectic Cu -1,0 wt%Cr alloy during unidirectional solidification, Science and Technology of Advanced Materials 6, 950-955 (2005).
  • [3] E. Guzik, A model of irregular eutectic growth taking as an example the graphite eutectic in Fe-C alloys. Dissertations Monographies 15, AGH Kraków (1994).
  • [4] E. Guzik., D. Kopyciński, Modelling structure parameters of irregular eutectic growth: Modification of Magnin-Kurz theory, Metallurgical and Mat. Trans. 37A, 3057-3067 (2006).
  • [5] V. L. Davies, Mechanism of crystallization in binary eutectic system, Journal of the Institute of Metals 93, 10-14 (1964-65).
  • [6] W. Wołczyński, Role of physical factors in solid - liquid interface formation during oriented eutectic growth, Crystal Research and Technology 25 (1), 1303-1309 (1990).
  • [7] W. Wołczyński, Contribution to transition layer determination for oriented eutectic growth, Crystal Research and Technology 25 (12), 1433-437 (1990).
  • [8] W. Wołczyński, Formation of concave-convex interface shape during oriented eutectic growth, Crystal Research and Technology 26 (2), 173-178 (1991).
  • [9] W. Wołczyński, Parabolic approximation to the shape of oriented eutectic interface, Crystal Research and Technology 27 (2), 195-200 (1992).
  • [10] W. Wołczyński, Concentration micro-field for lamellar eutectic growth, Defect and Diffusion Forum 272, 123-138 (2007).
  • [11] W. Huang, L. Wang, Solidification researches using transparent model materials - A review, Science China Technological Sciences 55 (2), 377-386 (2012).
  • [12] L. E. Murr, E. Martinez, E.S. Gaytan, D.A. Ramirez, Contributions of light microscopy to contemporary materials characterization. The new directional solidification, Metallogr. Microstruct. Anal. 1, 45-58 (2012).
  • [13] K. A. Jackson, J.D. Hunt, Lamellar and rod eutectic growth, Transaction of the Metallurgical Society of AIME 236, 1129-1142 (1966).
  • [14] A. V. Catalina, P.W. Voorhees, R.H. Huff, A.L. Ganau, A model for eutectic growth in multicomponent alloys, IOP Conf. Series: Materials Science and Engineering 84 012085 (2015).
  • [15] M. Trepczyńska-Łent, Possibilities of the materials properties improvement for the cementite eutectic by means of unidirectional solidification, Archives of Metallurgy and Materials 58 (3), 987-991 (2013).
  • [16] M. Trepczyńska-Łent, XRD and EBSD measurements of directional solidification Fe-C eutectic alloy. Archives of Foundry Engineering 16 (4), 169-174 (2016).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81d407bb-a80d-4958-8102-87b06f3f4533
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.