Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the analysis of solid-liquid interface morphology in white carbide eutectic was made. In a vacuum Bridgman-type furnace, under an argon atmosphere, directionally solidified sample of Fe - C alloy was produced. The pulling rate was v = 125 μm/s (450 mm/h) and constant temperature gradient G = 33.5 K/mm. The microstructure of the sample was frozen. The microstructure of the sample was examined on the longitudinal section using an light microscope and scanning electron microscope.
Wydawca
Czasopismo
Rocznik
Tom
Strony
365--368
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- UTP University of Science and Technology, Faculty of Mechanical Engineering, Department of Materials Science and Engineering, 7. S. Kaliskiego Av., 85-796 Bydgoszcz, Poland
Bibliografia
- [1] P. Magnin, R. Trivedi, Acta Metall. Mater. 39, 44, 453-467 (1991).
- [2] R. Hu, X. Bi, J. Li, H. Fu, Interface morphology evolvement and microstructure characteristics of hypoetectic Cu -1,0 wt%Cr alloy during unidirectional solidification, Science and Technology of Advanced Materials 6, 950-955 (2005).
- [3] E. Guzik, A model of irregular eutectic growth taking as an example the graphite eutectic in Fe-C alloys. Dissertations Monographies 15, AGH Kraków (1994).
- [4] E. Guzik., D. Kopyciński, Modelling structure parameters of irregular eutectic growth: Modification of Magnin-Kurz theory, Metallurgical and Mat. Trans. 37A, 3057-3067 (2006).
- [5] V. L. Davies, Mechanism of crystallization in binary eutectic system, Journal of the Institute of Metals 93, 10-14 (1964-65).
- [6] W. Wołczyński, Role of physical factors in solid - liquid interface formation during oriented eutectic growth, Crystal Research and Technology 25 (1), 1303-1309 (1990).
- [7] W. Wołczyński, Contribution to transition layer determination for oriented eutectic growth, Crystal Research and Technology 25 (12), 1433-437 (1990).
- [8] W. Wołczyński, Formation of concave-convex interface shape during oriented eutectic growth, Crystal Research and Technology 26 (2), 173-178 (1991).
- [9] W. Wołczyński, Parabolic approximation to the shape of oriented eutectic interface, Crystal Research and Technology 27 (2), 195-200 (1992).
- [10] W. Wołczyński, Concentration micro-field for lamellar eutectic growth, Defect and Diffusion Forum 272, 123-138 (2007).
- [11] W. Huang, L. Wang, Solidification researches using transparent model materials - A review, Science China Technological Sciences 55 (2), 377-386 (2012).
- [12] L. E. Murr, E. Martinez, E.S. Gaytan, D.A. Ramirez, Contributions of light microscopy to contemporary materials characterization. The new directional solidification, Metallogr. Microstruct. Anal. 1, 45-58 (2012).
- [13] K. A. Jackson, J.D. Hunt, Lamellar and rod eutectic growth, Transaction of the Metallurgical Society of AIME 236, 1129-1142 (1966).
- [14] A. V. Catalina, P.W. Voorhees, R.H. Huff, A.L. Ganau, A model for eutectic growth in multicomponent alloys, IOP Conf. Series: Materials Science and Engineering 84 012085 (2015).
- [15] M. Trepczyńska-Łent, Possibilities of the materials properties improvement for the cementite eutectic by means of unidirectional solidification, Archives of Metallurgy and Materials 58 (3), 987-991 (2013).
- [16] M. Trepczyńska-Łent, XRD and EBSD measurements of directional solidification Fe-C eutectic alloy. Archives of Foundry Engineering 16 (4), 169-174 (2016).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81d407bb-a80d-4958-8102-87b06f3f4533