PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Chemometric Analysis to the Study of Snow at the Sudety Mountains, Poland

Identyfikatory
Warianty tytułu
PL
Zastosowanie analiz chemometrycznych w badaniach śnieżnych w Sudetach, Polska
Języki publikacji
EN
Abstrakty
EN
Snow samples were collected during winter 2011/2012 in three posts in the Western Sudety Mountains (Poland) in 3 consecutive phases of snow cover development, i.e. stabilisation (Feb 1st), growth (Mar 15th) and its ablation (Mar 27th). To maintain a fixed number of samples, each snow profile has been divided into six layers, but hydrochemical indications were made for each 10 cm section of core. The complete data set was subjected in the first run of chemometric data interpretation to Cluster Analysis as well as Principal Components Analysis. Further, Self-Organizing Maps, type of neutral network described by Kohonen were used for visualization and interpretation of large high-dimensional data sets. For each site the hierarchical Ward’s method of linkage, squared Euclidean distance as similarity measure, standardized raw data, cluster significance test according to Sneath’s criterion clustering of the chemical variables was done. Afterwards this grouping of the chemical variables was confirmed by the results from Principal Components Analysis. The major conclusion is that the whole system of three sampling sites four patterns of variable groupings are observed: the first one is related to the mineral salt impact; the second one - with the impact of secondary emissions and organic pollutants; next one - with dissolved matter effect and the last one - with oxidative influence, again with relation to anthropogenic activities like smog, coal burning, traffic etc. It might be also concluded that specificity of the samples is determined by the factors responsible for the data set structure and not by particular individual or time factors.
Rocznik
Strony
621--637
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Climatology and Atmosphere Protection, Institute of Geography and Regional Development, University of Wroclaw, ul. A. Kosiby 8, 51-670 Wroclaw, Poland
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland
autor
  • Chair of Analytical Chemistry, Faculty of Chemistry, University of Sofia, J Bourchier Blvd. 1, 1164 Sofia, Bulgaria
autor
  • Chair of Physical Chemistry, Faculty of Chemistry, University of Sofia, J Bourchier Blvd. 1, 1164 Sofia, Bulgaria
autor
  • Department of Climatology and Atmosphere Protection, Institute of Geography and Regional Development, University of Wroclaw, ul. A. Kosiby 8, 51-670 Wroclaw, Poland
autor
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland
Bibliografia
  • [1] Davidson CI, Santhanam S, Fortmann RC, Olson MP. Atmospheric transport and deposition of trace elements onto the Greenland ice sheet. Atmos Environ. 1985;19:2065-2081. DOI: 10.1016/0004-6981(85)90115-5.
  • [2] Hidy GM. Snowpack and precipitation chemistry at high altitudes. Atmos Environ. 2003;37:1231-1242. DOI: 10.1016/j.jhydrol.2011.09.007.
  • [3] Dossi C, Ciceri E, Giussani B, Pozzi A, Galgaro A, Viero A, et al. Water and snow chemistry of main ions and trace elements in the karst system of Monte Pelmo massif (Dolomites, Eastern Alps, Italy). Mar Freshwater Res. 2007;58(7):649-656. DOI: 10.1071/MF06170.
  • [4] Colbeck SC. Theory of metamorphism of dry snow. J Geophys Res. 1983;88(19):5475-5482. DOI: 10.1029/JC088iC09p05475.
  • [5] Lee J, Nez VE, Feng X, Kirchner JW, Osterhuber R, Renshaw CE. A study of solute redistribution and transport in seasonal snowpack using natural and artificial tracers. J Hydrol. 2008;357(3):243-254. DOI: 10.1016/j.jhydrol.2008.05.004.
  • [6] De Rosemond S, Duro DC, Dubé M. Comparative analysis of regional water quality in canada using the water quality index. Environ Monit Assess. 2009;156(1-4):223-240. DOI: 10.1007/s10661-008-0480-6.
  • [7] Turk JT, Taylor HE, Ingersoll GP, Tonnessen KA, Clow DW, Mast MA, et al. Major-ion chemistry of the Rocky Mountain snowpack, USA. Atmos Environ. 2001;35:3957-3966. DOI: 10.1016/S1352-2310(01)00189-3.
  • [8] Singh P, Singh VP. Snow and Glacier Hydrology. Water Science and Technology, Kluwer Academic Publishers, 2001; .756. http://www.springer.com/us/book/9780792367673.
  • [9] Chang K, Li Z. Modeling snow accumulation with a geographic information system. Int J Geogr Inf Sci. 2000;14(7):693-707. DOI: 10.1080/136588100424981.
  • [10] Błaś M, Cichała-Kamrowska K, Sobik M, Polkowska Ż, Namieśnik J. Conditions controlling atmospheric pollutant deposition via snowpack. Environ Rev. 2010;18:87-114. DOI: 10.1139/A10-003.
  • [11] Colbeck SC. A simulation of the enrichment of atmospheric pollutants in snow cover runoff. Water Resour Res. 1981;17(5):1383-1388. DOI: 10.1029/WR017i005p01383.
  • [12] Dore AJ, Sobik M, Migała K. Patterns of precipitation and pollutant deposition by rain and snow in the western Sudetes Mountains, Poland. Atmos Environ. 1999;33:3301-3312. DOI: 10.1016/S1352-2310(98)00294-5.
  • [13] Kozłowski R, Jóźwiak M, Jóźwiak M, Rabajczyk A. Chemism of atmospheric precipitation as a consequence of air pollution: the case of Poland’s holy cross mountains. Polish J Environ. 2011;4:919-924. www.pjoes.com/abstracts/2011/Vol20/No04/13.html.
  • [14] Zimmermann F, Matschullat J, Bruggemann E, Pleβow K, Wienhaus O. Temporal and elevation related variability in precipitation chemistry from 1993 to 2002, Eastern Erzgebirge, Germany. Water Air Soil Pollut. 2006;170:123-141. DOI: 10.1007/s11270-006-2860-2.
  • [15] Tsakovski S, Tobiszewski M, Simeonov V, Polkowska Ż, Namieśnik J. Chemical composition of water from roofs in Gdansk, Poland. Environ Pollut. 2010;58:84-91. DOI: 10.1016/j.envpol.2009.07.037.
  • [16] Simeonov V, Simeonova P, Tsakovski S, Lovchinov V. Lake water monitoring data assessment by multivariate statistics. J Water Resource Prot. 2010;2:353-361. DOI: 10.4236/jwarp.2010.24041.
  • [17] Cini R, Prodi F, Santachiara G, Porcu F, Bellandi S, Stortini AM, et al. Chemical characterization of cloud episodes at a ridge site in Tuscan Appennines. Atmos Res. 2002;61:311-334. DOI: 10.1016/S0169-8095(01)00139-9.
  • [18] Stanimirova I, Walczak B, Massart DL. Multiple factor analysis in environmental chemistry. Anal Chim Acta. 2005;545:1-12. DOI: 10.1016/j.aca.2005.04.054.
  • [19] Mellinger M. Chemometr Intell Lab Syst. 1987;2(29):29-36. DOI: 10.1016/0169-7439(87)80083-7.
  • [20] Kohonen T. Self-organizing Maps. Berlin: Springer; 2001. www.springer.com/cn/book/9783540679219.
  • [21] Jin H, Shum WH, Leung KS, Wong ML. Expanding self-organizing map for data visualization and cluster analysis. Inf Sci. 2004;163:157-173. DOI: 10.1016/j.ins.2003.03.020.
  • [22] Cavazos T. Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans. J Clim. 2000;13:1718-1732. DOI: 10.1175/1520-04422000013<1718:USOMTI>2.0.CO;2.
  • [23] Fassnacht SR, Derry JE. Defining similar regions of snow in the Colorado River Basin using self-organizing maps. Water Resour Res. 2010;46:W04507. DOI: 10.1029/2009WR007835.
  • [24] Ward JH. Jr. Hierarchical grouping to optimize an objective function. J Amer Stat Assoc. 1963;58:236-244. DOI: 10.1080/01621459.1963.10500845.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81d24018-a6ca-4499-a9c4-d53b2bbbc613
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.