PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

U-Th ages and facies properties of Edremit travertines and tufas, Van, Eastern Anatolia : implications for the neotectonics of the region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Travertine formation is one of the most important archives of active tectonics in a region and provides information about climate, water temperature and quantity, and biological activity. The Edremit travertines and tufas extend over nearly 160 km2 within the boundaries of the Edremit area to the east of Lake Van (eastern Turkey), and yield important evidence towards understanding the neotectonics of the region. The Edremit travertines and tufas were studied throughout their full stratigraphic extent, the factors controlling the formation of these deposits were examined, and the succession was sampled for U/Th analysis. Travertine formation was found to occur from 542-29.7 ka, with two different tufa formation periods: from 29.7-5.8 ka and 5.8-2.08 ka. Pauses in travertine formation (palaeosols) were identified from 510-470 ka, 289-269 ka and 91-34 ka. Our study showed that climate parameters affected the formation of tufa, while the Edremit travertines developed under the control of tectonism. The Van Fault is directly associated with travertine development and its age was identified as 542 ka or older. Since the Gürpιnar Fault, one of the most important faults in the region, is effective in shaping the southern slope of the travertines and limiting the movement of the Van Fault, its age should be younger than 542.4 ka. The Elmalιk Fault played an active role in the formation of the Edremit tufas and is proposed to be 29.7 ka in age, from stratigraphic relationships in the region.
Słowa kluczowe
Rocznik
Strony
art. no. 28
Opis fizyczny
Bibliogr. 143 poz., fot., rys., tab., wykr.
Twórcy
  • Yüzüncü Yil University, Department of Geological Engineering, 65080, Van, Turkey
  • Yüzüncü Yil University, Department of Geological Engineering, 65080, Van, Turkey
  • Yüzüncü Yil University, Department of Geological Engineering, 65080, Van, Turkey
autor
  • High-precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
  • Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan
  • High-precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
  • Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan
  • Global Change Research Center, National Taiwan University, Taipei 10617, Taiwan
Bibliografia
  • 1. Acarlar, M., Bilgin, A.Z., Elibol, E., Erkan, T., Gedik, I., Guner, E., Hakyemez, Y., Şen, A.M., Uğuz, M.F., Umut, M., 1991. Van Gölü doğusu ve kuzeyinin jeolojisi (in Turkish). MTA Report No. 9469, Ankara.
  • 2. Açlan, M., Altun, Y., 2018. Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): an indication for collision between Arabian and Eurasian plates. Journal of African Earth Sciences, 142: 1-11.
  • 3. Akçar, N., Schlüchter, C., 2005. Paleoglaciations in Anatolia: a schematic review and first results. Eiszeitalter und Gegenwart, 55: 102-121.
  • 4. Alcicek, M.C., Alcicek, H., Altunel, E., Arenas, C., Bons, P., Brogi, A., Capezzuoli, E., de Riese, T., Della Porta, G., Gandin, A., Guo, L., Jones, B., Karabacak, V., Kershaw, S., Liotta, D., Mindszenty, A., Pedley, M., Ronchi, P., Swennen, R., Temiz, U., 2017. Comment on “First records of syn-diagenetic non-tectonic folding in Quaternary thermogene travertines caused by hydrothermal incremental veining” by Billi et al. Tectonophysics, 721: 491-500.
  • 5. Altunel, E., 1996. Morphological features, ages and neotectonic importance of the Pamukkale travertines (in Turkish with English summary). Bulletin of Mineral Research and Exploration Institute (MTA) of Turkey, 118: 47-64.
  • 6. Altunel, E., Hancock, P.L., 1993a. Morphology and structural setting of Quaternary Travertines at Pamukkale, Turkey. Geological Journal, 28: 335-346.
  • 7. Altunel, E., Hancock, P.L., 1993b. Active fissuring faulting in Quaternary travertines at Pamukkale, western Turkey. Zeitschrift für Geomorphologie Supplement-Band, 94: 285-302.
  • 8. Altunel, E., Hancock, P.L., 1996. Structural attributes of travertine filled extensional fissures in the Pamukkale plateau, Western Turkey. International Geology Review, 38: 768-777.
  • 9. Ambraseys, N.N., Jackson, J.A., 1998. Faulting associated with historical and recent earthquakes in the eastern Mediterranean region. Geophysical Journal International, 133: 390-406.
  • 10. Andrews, J.E., 2006. Palaeoclimatic records from stable isotopes in riverine tufas; synthesis and review. Earth-Science Reviews, 75: 85-104.
  • 11. Angus, D.A., Wilson, D.C., Sandvol, E., Ni, J.F., 2006. Lithospheric structure of the Arabian and Eurasian collision zone in Eastern Turkey from S-wave receiver functions. Geophysical Journal International, 166: 1335-1346.
  • 12. Ayaz, M.E., 2002. Travertenlerde gözlenen morfolojik yapilar ve tabiat varliği olarak önemleri (in Turkish). Cumhuriyet Üniversitesi Yerbilimleri, 19: 123-134.
  • 13. Aydan, O., Ulusay, R., Kumbasar, H., Konagai, K., 2012. Site Investigation and Engineering Evaluation of the Van Earthquakes of October 23 and November 9, 2011. Technical Report. Japan Society of Civil Engineers (JSCE).
  • 14. Barilaro, F., Della Porta, G., Ripamonti, M., Capezzuoli, E., 2011. Petrographic and facies analysis of Pleistocene travertines in Southern Tuscany, Central Italy. AAPG Search and Discovery Article. 90124. 2011 AAPG Annual Convention and Exhibition, April 10-13, 2011, Houston, Texas.
  • 15. Barker, S., Knorr, G., Edwards, L., Parrenin, F., Putnam, A.E., Skinner, L.C., Wolff, E., Ziegler, M., 2011. 800,000 years of abrupt climate variability. Science, 334: 347.
  • 16. Barnes, L., Irwin, W.P., White, D.E., 1978. Global distribution of carbon dioxide discharges, and major zones of seismicity. U.S. Geological Survey, Water-Resources Investigations, Open-File Report, 78-39.
  • 17. Brogi, A., Liotta, D., Meccheri, M., Fabbrini, L., 2010b. Transtensional shear zones controlling volcanic eruptions: the Middle Pleistocene Mt. Amiata volcano (inner Northern Apennines, Italy). Terra Nova, 22: 137-146.
  • 18. Brogi, A., Alçiçek, M.C., Yalçiner, C.C., Capezzuoli, E., Liotta, D., Meccheri, M., Rimondi, V., Ruggieri, G., Gandin, A., Boschi, C., Büyüksarac, A., Alçiçek, H., Bülbül, A., Baykara, M.O., Shen, C.-C., 2016. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: insights from the Kamara geothermal area (western Anatolia, Turkey). Tectonophysics, 680: 211-232.
  • 19. Capezzuoli, E., Gandin, A., Sandrelli, F., 2010. Calcareous tufa as indicators of climatic variability: a case from the Southern Tuscany (Italy). Geological Society Special Publications, 336: 263-281.
  • 20. Capezzuoli, E., Gandin, A., Pedley, M., 2014. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology, 61: 1-21.
  • 21. Chafetz, H.S., Folk, R.L., 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology, 54: 289-316.
  • 22. Chafetz, H.S., Rush, P.F., Utech, N.M., 1991. Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology, 38: 107-126.
  • 23. Cheng, H., Edwards, L.R., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spotl, C., Wang, X., Calvin, A.E., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371: 82-91.
  • 24. Crossey, L.J., Fischer, T.P., Patchett, P.J., Karlstrom, K.E., Hilton, D.R., Newell, D.L., Huntoon, P., Reynolds, A.C., de Leeuw, G.A.M., 2006. Dissected hydrologic system at the Grand Canyon: interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology, 34: 25-28.
  • 25. Çağatay, M.N., Öğretmen, N., Damci, E., Stockhecke, M., Sancar, Ü., Eriş, K.K., Özeren, S., 2014. Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quaternary Science Reviews, 104: 97-116.
  • 26. Çukur, D., Krastel, S., Schmincke, H.-U., Sumita, M., Çağatay, M.N., Meydan, A.F., Damci, E., Stockhecke, M., 2014a. Seismic stratigraphy of the lake Van, eastern Turkey. Quaternary Science Reviews, 104: 63-84.
  • 27. D'Alessandro, W., Giammanco, S., Bellomo, S., Parello, F., 2007. Geochemistry and mineralogy of travertine deposits of the SW flank of Mt. Etna (Italy): relationships with past volcanic and degassing activity. Journal of Volcanology and Geothermal Research, 165: 64-70.
  • 28. Djamali, M., De Beaulieu, J.-L., Shah-Hosseini, M., Andrieu-Ponel, V., Ponel, P., Amini, A., Akhani, H., Leroy, S. A., Stevens, L., Lahijani, H., Brewer, S., 2008. A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quaternary Research, 69: 413-420.
  • 29. Djamali, M., Baumel, A., Brewer, S., Jackson, S.T., Kadereit, J.W., López-Vinyallonga, S., Simakova, A., 2012. Ecological implications of Cousinia Cass. (Asteraceae) persistence through the last two glacial-interglacial cycles in the continental Middle East for the Irano-Turanian flora. Review of Palaeobotany and Palynology, 172: 10-20.
  • 30. Dominguez-Villar, D., Vazquez-Navarro, J.A., Cheng, H., Edwards, R.L., 2011. Freshwater tufa record from Spain supports evidence for the past interglacial being wetter than the Holocene in the Mediterranean region. Global and Planetary Change, 77: 129-141.
  • 31. Erdoğan, O., Özvan, A., 2015. Evaluation of strength parameters and quality assessment of different lithotype levels of Edremit (Van) Travertine (Eastern Turkey). Journal of African Earth Science, 106: 108-117.
  • 32. Faccenna, C., Soligo, M., Billi, A., De Filippis, L., Funiciello, R., Rossetti, C., Tuccimei, P., 2008. Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, Central Italy): possible influence of climate and fault activity. Global and Planetary Change, 63: 299-308.
  • 33. Folk, R.L., Chafetz, H.S., Tiezzi, P.A., 1985. Bizarre forms of depositional and diagenetic calcite in hot-spring travertines, central Italy. SEPM Special Publication, 36: 349-369.
  • 34. Ford, T.D., Pedley, H.M., 1996. A review of tufa and travertine deposits of the world. Earth-Science Reviews, 41: 117-175.
  • 35. Fouke, B.W., Farmer, J.D., Des Marais, D.J., Pratt, L., Sturchio, N.C., Burns, P.C., Discipulo, M.K., 2000. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). Journal of Sedimentary Research, 70: 565-585.
  • 36. Gandin, A. Capezzuoli, E., 2008. Travertine versus calcareous tufa: distinctive petrologic features and stable isotope signatures. Italian Journal of Quaternary Science, 21: 125-136.
  • 37. Gradziński, M., 2010. Factors controlling growth of modern tufa: results of a feld experiment. Geological Society Special Publications, 336: 143-191.
  • 38. Gradziński, M., Wróblewski, W., Duliński, M., Hercman, H., 2014. Earthquake-affected development of a travertine ridge. Sedimentology, 61: 238-263.
  • 39. Gradziński, M., Bella, P., Holúbek, P., 2018. Constructional caves in freshwater limestone: a review of their origin, classification, significance and global occurrence. Earth-Science Reviews, 185: 179-201.
  • 40. Griffiths, H.I., Pedley, H.M., 1995. Did changes in the late last glacial and early Holocene atmosphere CO2 concentrations control the rates of tufa precipitation? Holocene, 52: 238-242.
  • 41. Glover, C., Robertson, A.H.F., 2003. Origin of tufa (cool-water carbonate) and related terraces in the Antalya area, SW Turkey. Geological Journal, 38: 329-358.
  • 42. Goudie, A.S.,Viles, H.A., Pentecost, A., 1993. The late-Holocene tufa decline in Europe. Holocene, 3: 181-186.
  • 43. Groff, F., Shevenell, L., 1987. Travertine deposits of Soda Dam, New Mexico, and their implications for the age and evolution of the Valles Caldera hydrothermal system. GSA Bulletin, 99: 292-305.
  • 44. Guido, D.M., Channing, A., Campbell, K.A., Zamuner, A., 2010. Jurassic geothermal landscapes and fossil ecosystems at San Agustín, Patagonia, Argentina. Journal of the Geological Society, 167: 11-20.
  • 45. Guido, D.M., Campbell, K.A., 2011. Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): characteristics and controls on regional distribution. Journal of Volcanology and Geothermal Research, 203: 35-47.
  • 46. Guo, L., Riding, R., 1998. Hot-spring travertine facies and sequences, Late Pleistocene Rapolano Terme, Italy. Sedimentology, 45: 163-180.
  • 47. Giustini, F., Brilli, M., Mancini, M., 2018. Geochemical study of travertines along middle-lower Tiber valley (central Italy): genesis, palaeo-environmental and tectonic implications. International Journal of Earth Science, 107: 1321-1342.
  • 48. Gülyüz, E., Durak, H., Özkaptan, M., Krijgsman, W., 2019. Paleomagnetic constraints on the early Miocene closure of the southern Neo-Tethys (Van region; East Anatolia): inferences for the timing of Eurasia-Arabia collision. Global and Planetary Change, 185, 103089.
  • 49. Heimann, A., Sass, E., 1989. Travertines in the northern Hula Valley, Israel. Sedimentology, 36: 95-108.
  • 50. Helvaci, C., Griffin, W.L., 1985. Rb-Sr geochronology of the Bitlis Massif, Avnik (Bingöl) area, SE Turkey. Geological Society Special Publications, 17: 403-413.
  • 51. Henchiri, M., Ahmed, W.B., Brogi, A., Alcicek, M.C., Benassi, R., 2017. Evolution of Pleistocene travertine depositional system from terraced slope to fissure-ridge in a mixed travertine-alluvial succession (Jebel El Mida, Gafsa, southern Tunisia). Geodinamica Acta, 29: 20-41.
  • 52. Huybers, P., Langmuir, C., 2009. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth and Planetary Science Letters, 286: 479-491.
  • 53. Irion, G., Müller, G., 1968. Mineralogy, petrology and chemical composition of some calcareous tufa from the Swäbische Alb, Germany. In: Recent Developments in Carbonate Sedimentology in Central Europe (eds. G. Müller and G.M. Friedman): 157-171. Springer, Berlin.
  • 54. Jones, B., Renaut, R.W., 2010. Calcareous spring deposits in continental settings. Developments in Sedimentology, 61: 177-224.
  • 55. Julia, R. 1983. Travertines. AAPG Memoir, 33: 64-72.
  • 56. Kadioğlu, M., Şen, Z., Batur, E., 1997. The greatest soda-water lake in the world and how it is influenced by climatic change. Annales Geophysicae, 15: 1489-1497.
  • 57. Kartal, R.F., Kadiroğlu, F.T., Turkoğlu, M., Kaplan, M., Yanik, K., Zunbul, S., Kilic, T., Demir, M., İde, A., Karaağac, D., 2012. Evaluation of aftershock activity of Van Earthquake, September, 23, 2011. In: 65th Geological Congress of Turkey, 2-6 April 2012, Ankara-Turkey. Abstracts Book, p. 21.
  • 58. Keskin, M., 2003. Magma generation by slab steepening and breakoff beneath a subduction accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia,Turkey. Geophysical Research Letters, 30: 8046-8050.
  • 59. Kind, R., Eken, T., Tilmann, F., Sodoudi, F., Taymaz, T., Bulut, F., Yuan, X., Can, B., Schneider, F., 2015. Thickness of the lithosphere beneath Turkey and surroundings from Sreceiver functions. Solid Earth, 6: 971-984.
  • 60. Kitano, Y., 1963. Geochemistry of calcareous deposits found in hot springs. Journal of Earth Science, Nagoya University, 11: 68-100.
  • 61. Koban, C.G., Schweigert, G., 1993. Microbial origin of travertine fabrics - two examples from southern Germany (Pleistocene Stuttgart travertines and Miocene Riedoschingen travertine). Facies, 29: 251-264.
  • 62. Koçyiğit, A., 2013. New field and seismic data about the intraplate strike-slip deformation in Van region, east Anatolian plateau, E Turkey. Journal of Asian Earth Science, 62: 586-605.
  • 63. Kraus, M., 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47: 41-70.
  • 64. Kronfeld, J., Voggel, J.C., Rosenthal, E., Weinstein-Evron, M., 1988. Age and paleoclimatic implications of the Bet Shean travertines. Quaternary Research, 30: 298-303.
  • 65. Kuzucuoğlu, C., Christol, A., Mouralis, D., Doğu, A.-F., Akköprü, E., Fort, M., Brunstein, D., Zorer, H., Fontugne, M., Karabiyikoglu, M., Scaillet, S., Reyss, J.-L., Guillou, H., 2010. Formation of the Upper Pleistocene terraces of Lake Van (Turkey). Journal of Quaternary Sciences, 25: 1124-1137.
  • 66. Landmann, G., Reimer, A., Lemcke, G., Kempe, S., 1996a. Dating Late Glacial abrupt climate changes in the 14,570 yr long continuous varve record of Lake Van, Turkey. Palaeogeography, Palaeoclimatology, Palaeoecology, 122: 107-118.
  • 67. Landmann, G., Reimer, A., Kempe, S., 1996b. Climatically induced lake level changes at Lake Van, Turkey, during the Pleistocene/Holocene transition. Global Biogeochemical Cycles, 10: 797-808.
  • 68. Lebedev, V.A., Sharkov, E.V., Keskin, M., Oyan, V., 2010. Geochronology of the Late Cenozoic volcanism in the area of Van Lake (Turkey): an example of the developmental dynamics for magmatic processes. Doklady Earth Sciences, 433: 1031-1037.
  • 69. Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, Data archived at the World Data Center for Paleoclimatology, Boulder, Colorado, USA.
  • 70. Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örcen, S., Heumann, G., Franz, S.O., Ülgen, U.B., Niessen, F., 2009. ‘PALEOVAN', International Continental Scientific Drilling Program (ICDP): site survey results and perspectives. Quaternary Science Reviews, 28: 1555-1567.
  • 71. Litt, T., Anselmetti, F.S., Çağatay, M.N., Kipfer, R., Krastel, S., Schmincke, H.U., Sturm, M., 2011. A 500,000-year-long sediment archive drilled in eastern Anatolia. American Geophysics Union Eos Transition, 92: 477-479.
  • 72. Litt, T., Pickarski, N., Heumann, G., 2014. A 600,000 year long continental pollen record from Lake Van, Eastern Anatolia (Turkey). Quaternary Science Revievs, 104: 30-41.
  • 73. Luo, L., Wen, H., Capezzuoli, E., 2021. Travertine deposition and diagenesis in Ca-deficiency perched hot spring systems: A case from Shihuadong, Tengchong, China. Sedimentary Geology, 414: 105827.
  • 74. Martin-Bello, L., Arenas, C., Jones, B., 2019. Lacustrine stromatolites: Useful structures for environmental interpretation - an example from the Miocene Ebro Basin. Sedimentology, 66: 2098-2133.
  • 75. Martinez-Diaz, J., Hernández-Enrile, J., 2001. Using travertine deformations to characterize paleoseismic activity along an active oblique-slip fault: The Alhama de Murcia fault (Betic Cordillera, Spain). Acta Geológica Hispánica, 36: 3-4.
  • 76. Mesci, B.L., Gürsoy, H, Tatar, O., 2008. The evolution of travertine masses in the Sivas area (central Turkey) and their relationships to active tectonics. Turkish Journal of Earth Sciences, 17: 219-240.
  • 77. Mesci, B.L., Tatar, O., Piper, J.D.A., Gürsoy, H., Altunel, E., Crowley, S., 2013. The efficacy of travertine as a palaeoenvironmental indicator: palaeomagnetic study of neotectonic examples from Denizli, Turkey. Turkish Journal of Earth Sciences, 22: 191-203.
  • 78. Mohajjel, M., Taghipour, K., 2014. Quaternary travertine ridges in the Lake Urmia area: Active extension in NW Iran. Turkish Journal of Earth Sciences, 23: 602-614.
  • 79. Morrison, R.B., 1967. Principles of Quaternary soil stratigraphy. Proceeding of International Associations, Quaternary Research (INQUA), 8: 1-113.
  • 80. Muir-Wood, R., 1993. Neohydrotectonics. Zeitschrift für Geomorphologie Supplement-Band, 94: 275-284.
  • 81. Nyssen, J., Poesen, J., Moeyersons, J., Deckers, J., Haile, M., Lang, A., 2004. Human impact on the environment in the Ethiopian and Eritrean highlands - a state of the art. Earth Science Reviews, 64: 273-320.
  • 82. Owen, R.B., Renaut, R.W., Stamatakis, M.G., 2010. Diatomaceous sedimentation in late Neogene lacustrine basins of western Macedonia. Greece. Journal of Paleolimnology, 44: 343-359.
  • 83. Oyan, V., 2018a. Ar\Ar dating and petrogenesis of the Early Miocene Taţkapý-Mecitli (Erciţ-Van) granitoid, Eastern Anatolia Collisional Zone, Turkey. Journal of Asian Earth Sciences, 158: 210-226.
  • 84. Oyan, V., 2018b. Geochemical and petrologic evolution of Otlakbaţý basaltic volcanism to the east of Lake Van. Bulletin of the Mineral Research and Exploration. 157: 1-21.
  • 85. Oyan, V., Keskin, M., Lebedev, V.A., Chugaev, A.V., Sharkov, E.V., 2016. Magmatic evolution of the Early Pliocene Etrüsk stratovolcano, Eastern Anatolian Collision Zone, Turkey. Lithos, 256-257: 88-108.
  • 86. Oyan, V., Keskin, M., Lebedev, V.A., Chugaev, A.V., Sharkov, E.V., Ünal, E., 2017. Petrology and geochemistry of the Quaternary mafic volcanism in the north-east of Lake Van, Eastern Anatolian Collision Zone, Turkey. Journal of Petrology, 58: 1701-1728.
  • 87. Ön, Z. B., Özeren, M. S., 2019. Temperature and precipitation variability in eastern Anatolia: results from independent component analysis of Lake Van sediment data spanning the last 250 kyr BP. Quaternary International, 514: 119-129.
  • 88. Özdemir, Y., Güleç, N., 2014. Geological and geochemical evoluation of Suphan stratovolcano Eastern Anatolia, Turkey: evidence for the lithosphere-asthenosphere interaction on post collisional volcanism. Journal of Petrology, 55: 37-62.
  • 89. Özacar, A.A., Gilbert, H., Zandt, G., 2008. Upper mantle discontinuity structure beneath East Anatolian Plateau (Turkey) from receiver functions. Earth and Planetary Science Letters, 269: 426-434.
  • 90. Özdemir, Y., Karaoğlu, Ö., Tolluođlu, A.Ü., Güleç, N., 2006. Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent postcollisional volcanism in Turkey. Chemical Geology, 226: 189-211.
  • 91. Özkaymak, C., Sozbilir, H., Bozkurt, E., Dirik, K., Topal, T., Alan, H., Cağlan, D., 2012. Seismic geomorphology of October 23, 2011 Tabanli-Van Earthquake and its relation to active tectonics of East Anatolia (in Turkish with English summary). Journal of Geological Engineering, 35: 175-199.
  • 92. Özkul, M., Alçiçek, M.C., Heybeli, H., Semiz, B., Erten, H., 2001. Depositional features of Denizli hot spring travertines and their appraisement in view marbling (in Turkish with English summary). III. Turkey Marble Symposium (Mersem'2001) Proceeding Book, 57-72, Afyon, Turkey.
  • 93. Özkul, M., Varol, B., Alçiçek, M.C., 2002. Depositional environments and petrography of the Denizli travertines. Bulletin of Mineral Research Exploring, 125: 13-29.
  • 94. Özkul, M., Gökgöz, A., Horvatinčić, N., 2010. Depositional properties and geochemistry of Holocene perched springline tufa deposits and associated spring waters: a case study from the Denizli province, Western Turkey. Geological Society Special Publications, 336: 245-262.
  • 95. Özkul, M., Gökgöz, A., Sandor, K., Baykara, M.O., Shen, C.C., Chang, Y.W., Kaya, A., Hançer, M., Aratman, C., Taylan, A., Örü, Z., 2014. Sedimentological and geochemical characteristics of a fluvial travertine: a case from the eastern Mediterranean region. Sedimentology, 61: 291-318.
  • 96. Özkul, M., Kele, S., Gökgöz, A., Shen, C.C., Jones, B., Baykara, M.O., Fürizs, I., Nemeth, T., Chang, Y.-W., Alçiçek, M.C., 2013. Comparison of the Quaternary travertine sites in the Denizli Extensional Basin based on their depositional and geochemical data. Sedimentary Geology, 294: 179-204.
  • 97. Pazonyi, P., Kordos, L., Magyari, E., Marinova, E., Füköh, L., Venczel, M., 2014. Pleistocene vertebrate faunas of the Sütto travertine complex (Hungary). Quaternary International, 319: 50-63.
  • 98. Pedley, H.M., 1990. Classification and environmental models of cool freshwater tufas. Sedimentary Geology, 68: 143-154.
  • 99. Pedley, M., 2009. Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology, 56: 221-246.
  • 100. Pedley, H.M., Rogerson, M., Middleton, R., 2009. The growth and morphology of freshwater calcite precipitates from in vitro mesocosm flume experiments. Sedimentology, 56: 511-527.
  • 101. Pentecost, A., 1981. The tufa deposits of the Malham District. Field Study, 5: 365-387.
  • 102. Pentecost, A., Viles, H.A., 1994. A review and reassessment of travertine classification. Géographie Physique et Quaternaire, 48: 305-314.
  • 103. Pentecost, A., 1995. The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews, 14: 1005-1028.
  • 104. Pentecost, A., 2005. Travertine. Springer, Berlin.
  • 105. Pentecost, A., Merritt, R., Carter, C., 2014. Growth and calcification of Vaucheria (Xanthophyta) on a travertine surface in a temperate freshwater setting. European Journal of Phycology, 49: 516-525.
  • 106. Pecsi, M., 1995. Loess stratigraphy and Quaternary climatic change. Loess in Form, 3: 23-30.
  • 107. Pickarski, N., Kwiecien, O., Langgut, D., Litt, T., 2015. Abrupt climate and vegetation variability of eastern Anatolia during the last Glacial. Climate of the Past, 11: 1491-1505.
  • 108. Piper, J.D., Mesci, L.B., Gürsoy, H., Tatar, O., Davies, C.J., 2007. Palaeomagnetic and rock magnetic properties of travertine: its potential as a recorder of geomagnetic palaeosecular variation, environmental change and earthquake activity in the Sicak Cermik geothermal field, Turkey. Physics of the Earth and Planetary Interiors, 161: 50-73.
  • 109. Retallack, G.J., 2014. Paleosols and paleoenvironments of early Mars. Geology, 42: 755-758.
  • 110. Richmond, G.M., 1962. Quaternary stratigraphy of the La Sal Mountains, Utah. U.S. Geological Survey Professional Paper, 324.
  • 111. Rogerson, M., Pedley, H.M., Wadhawan, J.D., Middleton, R., 2008. New insights into biological influence on the geochemistry of freshwater carbonate deposits. Geochimica et Cosmochimica Acta, 72: 4976-4987.
  • 112. Sağlam Selçuk, A., 2016. Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey. Geomorphology, 270: 9-21.
  • 113. Sheldon, N.D., Tabor, N.J., 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95: 1-52.
  • 114. Shen, C.-C., Wu, C.-C., Cheng, H., Edwards, R.L., Hsieh, Y.-T., Gallet, S., Chang, C.-C., Li, T.-Y., Lam, D.D., Kano, A., Hori, M., Spötl, C., 2012. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta, 99: 71-86.
  • 115. Shen, C.-C., Cheng, H., Edwards, R.L., Moran, S.B., Edmonds, H.N., Hoff, J.A., Thomas, R.B., 2003. Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy. Analytical Chemistry, 75: 1075-1079.
  • 116. Sibson, R.H., Moore, J.M.M., Rankin, A.H., 1975. Seismic pumping a hydrothermal fluid transport mechanism. Journal of the Geological Society, 131: 653-659.
  • 117. Singer, A., Wieder, M., Gvirtzman, G., 1994. Paleoclimate deduced from some early Jurassic basalt-derived paleosols from northern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology, 111: 73-82.
  • 118. Southard, A.R.,Miller, R.W.,1966.Parent material-clay relations in some northern Utah soils. Soil Science Society of America Journal, 30: 97-101.
  • 119. Steffensen, J.P., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S.J., Jouzel, J., Masson-Delmotte, V., Popp, T., Rasmussen, S.O., Röthlisberger, R., Ruth, U., Stauffer, B., Siggaard-Andersen, M.L., Sveinbjörnsdóttir, A.E., Svensson, A.,White, J.W.C., 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321: 680-684.
  • 120. Stevens, L.R., Djamali, M., Andrieu-Ponel, V., de Beaulieu, J.-L., 2012. Hydroclimatic variations over the last two glacial/interglacial cycles at Lake Urmia, Iran. Journal of Paleolimnology, 47: 645-660.
  • 121. Stockhecke, M., Sturm, M., Brunner, I., Schmincke, H.U., Sumita, M., Kipfer, R., Çukur, D., Kwiecien, O., Anselmetti, F.S., 2014. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600,000 years. Sedimentology, 61: 1830-1861.
  • 122. Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., Röthlisberger, R., Seierstad, Steffensen, J.P., Vinther, B.M., 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past, 4: 47-57.
  • 123. Şaroğlu, F., Yilmaz, Y., 1986. Doğu Anadolu'da neotektonik donemdeki jeolojik evrim ve havza modelleri (in Turkish). Mineral Research Exploring Instute (MTA) Bulletin, 107: 73-94.
  • 124. Tabor, N.J., Myers, T.S., 2015. Paleosols as indicators of paleoenvironment and paleoclimate. Annual Reviews Earth Science, 43: 333-361.
  • 125. Tagliasacchi-Toker, E., 2018. Orta-geç Pleistosen Gürlek-Kocabaş (Denizli) ve Örtülü (Afyon) travertenlerinin paleoçevresel gelişimi, SW. Türkiye (in Turkish). Türkiye Jeoloji Bülteni, 60: 1-22.
  • 126. Tlili, F., Ayari, A., Regaya, K.. 2021. Bio-mineral needle fiber calcite (NFC) in Tunisian Pleistocene calcretes (topology and crystallization). Journal of Earth System Science, 130: 1-16.
  • 127. Thomas, S.G., Tabor, N.J., Yang, W., Myers, T.S., Yang, Y., Wang, D., 2011. Palaeosol stratigraphy across the Permian-Triassic boundary, Bogda Mountains, NW China: implications for palaeoenvironmental transition through Earth's largest mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology. 308: 41-64.
  • 128. Toker, M., 2013. Time-dependent analysis of aftershock events and structural impacts on intraplate crustal seismicity of the Van earthquake (Mw 7.1, 23 October 2011), E-Anatolia. Central European Journal of Geosciences, 5: 423-434.
  • 129. Toker, M., 2014. Discrete characteristics of the aftershock sequence of the 2011 Van earthquake. Journal of Asian Earth Science, 92: 168-186.
  • 130. Toker, M., Pinar, A., Tur, H., 2017. Source mechanisms and faulting analysis of the aftershocks in the Lake Erçek area (Eastern Anatolia, Turkey) during the 2011 Van event (Mw 7.1): implications for the regional stress field and ongoing deformation processes. Journal of Asian Earth Science, 150: 73-86.
  • 131. Ulusoy, İ., Çubukçu, H.E., Aydar, E., Labazuy, P., Ersoy, O., Şen, D., Alain, G., 2012. Volcanological evolution and caldera forming eruptions of Mt. Nemrut (Eastern Turkey). Journal of Volcanology and Geothermal Research, 245-246: 21-39.
  • 132. Utkucu, M., 2013. 23 October 2011 Van, Eastern Anatolia, earthquake (Mw 7·1) and seismotectonics of Lake Van area. Journal of Seismology, 17: 783-805.
  • 133. Utkucu, M., Kizilbuğa, S., Arman, H., 2017. Constraining fault rupture of the 27 November 2005 Qeshm Island (Iran) earthquake (MW=6.0) in the Arabian Gulf from the inversion of the teleseismic broadband waveforms. Extended abstract, fourth international conference on engineering geophysics, proceedings book, October 9-12, 2017 United Arab Emirates University, Al Ain.
  • 134. Van Noten, K., Topal, S., Baykara, O., Özkul, M., Claes, H., Aratman, C., Swennen, R., 2018. Pleistocene-Holocene tectonic reconstruction of the Ballýk travertine (Denizli Graben, SW Turkey): (de)formation of large travertine geobodies at intersecting grabens. Journal of Structural Geology 118: 114-134.
  • 135. Veysey, J., Fouke, B.W., Kandianis, M.T., Schickel, T.J., Johnson, R.W., Goldenfeld, N., 2008. Reconstruction of water temperature, pH, and flux of ancient hot springs from travertine depositional facies. Journal of Sedimentary Research, 78: 69-76.
  • 136. Viles, H.A., Goudie, A.S., 1990. Tufas, travertines and allied carbonate deposits. Progress in Physical Geography, 14: 19-41.
  • 137. Wick, L., Lemcke, G., Sturm, M., 2003. Evidence for Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene, 13: 665-675.
  • 138. Wolff, E.W., Chappellaz, J., Blunier, T., Rasmussen, S.O., Svensson, A., 2010. Millennial-scale variability during the last Glacial: the ice core record. Quaternary Science Reviews, 29: 2828-2838.
  • 139. Yeşilova, Ç., Güngör Yeşilova, P., Açlan, M., 2015a. Edremit (Van) Travertenlerinin Fasiyes Analizi (in Turkish). 68. Türkiye Jeoloji Kurultayi, 578-579, Ankara, Türkiye.
  • 140. Yeşilova, Ç., Üner, S., Güngör Yeşilova, P., Açlan, M., Aliriz, M.G., 2015b. Kuvaterner Yaşli Edremit Travertenleri'nin Fasiyes Özellikleri ve Oluşum Ortamlari (Van Gölü Havzasi-Doğu Anadolu) (in Turkish). Traverten - Tufa Çaliştayi, Pamukkale Üniversitesi Mühendislik Fakültesi, Denizli: 54-55.
  • 141. Yeşilova, Ç., 2019. Preliminary approach to paleogeographic properties of Edremit (Van) Travertines, eastern Turkey. IESCA, 7-11 October 2019, İzmir.
  • 142. Yeşilova, Ç., Gülyüz, E., Ci-Rong, H., Chuan-Chou, S., 2019. Giant tufas of Lake Van record lake-level fluctuations and climatic changes in eastern Anatolia, Turkey. Palaeogeography, Palaeoclimatology, Palaeoecology, 533: 1-9.
  • 143. Zor, E., Gürbüz, C., Türkelli, N., Sandvol, E., Seber, D., Barazangi, M., 2003. The crustal structure of the East Anatolian Plateau from receiver functions. Geophysical Research Letters, 30: 8044-8047.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81ceec3c-1005-4988-8999-a1970064fb8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.