Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Structural components are often operated under combined stress conditions (primary and secondary stresses), but the stress levels generated by residual stress (or secondary stress) is hardly ever evaluated. Hence, stress intensity factors at the crack tips of a compact tension (CT) specimen under a pre-compressed load condition are analyzed using the finite element method. Then, the average residual stress intensity factor is calculated and analyzed. As the crack length α0/W increases, the average residual stresses σave/σ0 grows under the same pre-compression load. σave/σ0 increases rapidly at a low range of the pre-compression load but tends to a constant in a high range of the load. The distribution of the average residual stress intensity factors Kave and Κave/σ0 of the CT specimen with same crack length under different pre-compression loads have the same tendency. Additionally, the distribution of Κave and KFEM under different pre-compression loads are also similar. Nevertheless, Kave estimated by the average residual stress is too conservative and not accurate, and the method is complex, which depends on the analysis of simulation. Therefore, a simple method for calculating Mode I stress intensity factor K for this model is presented. A group of examples is presented to verify the accuracy of the method.
Czasopismo
Rocznik
Tom
Strony
37--47
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
autor
- Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
autor
- Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
autor
- Aviation Engineering Institute, Civil Aviation University of China, Tianjin, China
autor
- The 18th Research Institute of China Electronics Technology Group Corporation, Tianjin, China
Bibliografia
- 1. Anderson T.L., 2005, Fracture Mechanics: Fundamentals and Applications, CRC Press.
- 2. ASTM, 2013, Standard Test Method for Measurement of Creep Crack Growth Times and Rates in Metals, 27.
- 3. Bower A.F., 2009, Applied Mechanics of Solids, CRC Press.
- 4. Chen L.Y., Wang G.Z., Tan J.P., Xuan F.Z., Tu S.T., 2013, Effects of residual stress on creep damage and crack initiation in notched CT specimens of a Cr-Mo-V steel, Engineering Fracture Mechanics, 97, 80-91.
- 5. Erdogan F., 1962, On the stress distribution in plates with collinear cuts under arbitrary loads, Proceedings of the Fourth US National Congress of Applied Mechanics, 1, 547-574.
- 6. Hibbitt, Karlsson & Sorensen, Inc, 2014, ABAQUS version 6.14.
- 7. Isida M., 1966, Stress intensity factors for the tension of an eccentrically cracked strip, ASME, Journal of Applied Mechanics, 33, 3, 674-675
- 8. Nikbin K.M., 2004, Justification for meso-scale modeling in quantifying constraint during creep crack growth, Materials Science and Engineering: A, 365, 107-113.
- 9. O’Dowd N.P., Nikbin K.M., Biglari F.R., 2005, Creep crack initiation in a weld steel: effects of residual stress, Proceedings of 2005 ASME Pressure Vessels and Piping Division Conference, Denver, Colorado, USA, 843-851.
- 10. Rooke D.P., Percy D.J., 1976, Compendium of Stress Intensity Factors, HMSO Ministry of Defence, Procurement Executive.
- 11. Shirahatti A.M., Hossain S., Smith D.J., 2014, The effect of combined applied and residual stress on creep crack initiation in stainless steel, Procedia Engineering, 86, 669-676.
- 12. Sih G.C., Macdonald B., 1974, Fracture mechanics applied to engineering problems-strain energy density fracture criterion, Engineering Fracture Mechanics, 6, 2, 361-386.
- 13. Sih G.C., Paris P.C., Erdogan F., 1974, Crack-tip stress intensity factors for the plane extension and plate bending problems, Journal of Applied Mechanics, 29, 306-312.
- 14. Sneddon I.N., 1946, The distribution of stress in the neighbourhood of a crack in an elastic solid, Proceedings of the Royal Society of London, A, 187, 1009, 229-260.
- 15. Song X.M., Wang G.Z., Tu S.-T., Xuan F.Z., 2015a, Effects of residual stress on creep crack initiation and growth of Cr-Mo-V steel in cracked C(T) specimen, Procedia Engineering, 130, 1770-1778.
- 16. Song X.M., Wang G.Z., Xuan F.Z., Tu S.T., 2015b, Investigation of residual stress effects on creep crack initiation and growth using local out-of-plane compression, Engineering Fracture Mechanics, 149, 45-57.
- 17. Tada H., Paris P.C., Irwin G.R., 2000, The Stress Analysis of Cracks Handbook, American Society of Mechanical Engineers.
- 18. Turski M., Bouchard P.J., Steuwer A., Withers P.J., 2008, Residual stress driven creep cracking in AISI Type 316 stainless steel, Acta Materialia, 56, 3598-3612.
- 19. Webster G.A., Davies C.M., Nikbin K.M., 2011, Prediction of creep crack growth in the presence of residual stress, Materials at High Tempertures, 28, 3, 165-171.
- 20. Xu M., Chen J., Lu H., Xu J., Yu C., Wei X., 2016, Effects of residual stress and grain boundary character on creep cracking in 2.25Cr-1.6W steel, Materials Science and Engineering: A, 659, 188-197.
- 21. Zhao L., Jing H., Xu L., An J., Xiao G., 2012, Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint, Materials Design, 34, 566-575.
- 22. Zhao L., Jing H., Xu L., Han Y., Xiu J., 2013, Effect of residual stress on creep crack growth behavior in ASME P92 steel, Engineering Fracture Mechanics, 110, 233-248.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81c90e5a-e36b-4874-8c63-e33b1f897d56