Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Non-stationary flood frequency analysis (FFA) is applied to statistical analysis of seasonal flow maxima from Polish and Norwegian catchments. Three non-stationary estimation methods, namely, maximum likelihood (ML), two stage (WLS/TS) and GAMLSS (generalized additive model for location, scale and shape parameters), are compared in the context of capturing the effect of non-stationarity on the estimation of time-dependent moments and design quantiles. The use of a multimodel approach is recommended, to reduce the errors due to the model misspecification in the magnitude of quantiles. The results of calculations based on observed seasonal daily flow maxima and computer simulation experiments showed that GAMLSS gave the best results with respect to the relative bias and root mean square error in the estimates of trend in the standard deviation and the constant shape parameter, while WLS/TS provided better accuracy in the estimates of trend in the mean value. Within three compared methods the WLS/TS method is recommended to deal with non-stationarity in short time series. Some practical aspects of the GAMLSS package application are also presented. The detailed discussion of general issues related to consequences of climate change in the FFA is presented in the second part of the article entitled “Around and about an application of the GAMLSS package in non-stationary flood frequency analysis”.
Wydawca
Czasopismo
Rocznik
Tom
Strony
863--883
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- 1. Aucoin F (2015) FAdist: distributions that are sometimes used in hydrology. R package version 2.2. https://CRAN.R-project.org/package=FAdist
- 2. Becker M, Klößner S (2013) PearsonDS: Pearson distribution system. R package version 0.97. http://CRAN.R-project.org/package=PearsonDS
- 3. Bogdanowicz E. (2010) Multimodel approach to estimation of extreme value distribution quantiles. Podejście wielomodelowe w zagadnieniach estymacji kwantyli rozkładu wartości maksymalnej. In: Hydrologia w inżynierii i gospodarce wodnej. Tom 1, Ed. B. Więzik. Monografie Komitetu Inżynierii Środowiska, 68, (in Polish)
- 4. Bolker B, R Development Core Team (2016) bbmle: tools for general maximum likelihood estimation. R package version 1.0.18. https://CRAN.R-project.org/package=bbmle
- 5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New York
- 6. Cheng L, AghaKouchak A, Gilleland E, Katz RW (2014) Non-stationary extreme value analysis in a changing climate. Clim Change 127:353–369. doi:10.1007/s10584-014-1254-5
- 7. Coles SG (2001) An introduction to statistical modeling of extreme values. Springer, London
- 8. Debele SE, Bogdanowicz E, Strupczewski WG (2017) The impact of seasonal flood peak dependence on annual maxima design quantiles. Hydrol Sci J. doi:10.1080/02626667.2017.1328558
- 9. Draper D (1995) Assessment and propagation of model uncertainty (with discussion). J R Statist Soc B 57:45–97. doi:10.1515/acgeo-2015-0070
- 10. Gatnar E (2008) Podejście wielomodelowe w zagadnieniach dyskryminacji i regresji (Multimodel approach to issues of discrimination and regression). PWN, Warszawa (in Polish)
- 11. Gilleland E, Katz RW (2016) extRemes 2.0: an extreme value analysis package in R. J Stat Softw 72(8):1–39. doi:10.18637/jss.v072.i08
- 12. Guidelines for flood frequency analysis long measurement series of river discharge (2005) WMO/HOMS Component I81.3.01. http://www.wmo.int/pages/prog/hwrp/homs/Components/English/i81301.htm. Accessed Apr 2017
- 13. Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J Roy Stat Soc B 52:105–124
- 14. Kochanek K, Strupczewski WG, Bogdanowicz E, Feluch W, Markiewicz I (2013) Application of a hybrid approach in nonstationary flood frequency analysis—a Polish perspective. Nat Hazards Earth Syst Sci Discuss 1(5):6001–6024. doi:10.5194/nhessd-1-6001-2013
- 15. Koenker R (2005) Quantile Regression. Cambridge Books, Cambridge University Press, New York
- 16. Kwon H-H, Brown C, Lall U (2008) Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling. Geophys Res Lett. doi:10.1029/2007GL032220
- 17. Lima CHR, Lall U (2010) Spatial scaling in a changing climate: a hierarchical bayesian model for nonstationary multi-site annual maximum and monthly streamflow. J Hydrol 383:307–318. doi:10.1016/j.jhydrol.2009.12.045
- 18. López J, Francés F (2013) Non-stationary flood frequency analysis in continental Spa-nish rivers, using climate and reservoir indices as external covariates. Hydrol Earth Syst Sci 17:3189–3203. doi:10.5194/hess-17-3189-2013
- 19. Machado MJ, Botero BA, López J, Francés FA, Díez-Herrero BG (2015) Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol Earth Syst Sci 19:2561–2576. doi:10.5194/hess-19-2561-2015
- 20. Madigan D, Raftery AE (1994) Model selection and accounting for model uncertainty in graphical models using Occam’s window. J Am Statist Assoc 89:1535–1546
- 21. Markiewicz I, Strupczewski WG, Kochanek K (2010) On accuracy of upper quantiles Estimation. Hydrol Earth Syst Sci 14:2167–2175. doi:10.5194/hess-14-2167-2010
- 22. Markiewicz I, Strupczewski WG, Bogdanowicz E, Kochanek K (2015) Generalized exponential distribution in flood frequency analysis for Polish. Rivers. doi:10.1371/journal.pone.0143965
- 23. Mitosek HT, Strupczewski WG, Singh VP (2006) Three procedures for selection of annual flood peak distribution. J Hydrol 323:57–73. doi:10.1016/j.hydrol.2005.08.016
- 24. Opyrchal L (2005) Metoda analizy i oceny ryzyka awarii opracowana dla polskich budowli hydrotechnicznych (Method of analysis and risk assessment of breakdown for Polish hydrotechnical structures), Materiały Badawcze, Instytut Meteorologii i Gospodarki Wodnej, Seria: Inżynieria Wodna, 0239-6254; 17 (in Polish)
- 25. R Core Team (2017) R: a language and environment for statistical computing. R Foundation or Statistical Computing, Vienna. ISBN 3-900051-07-0
- 26. Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. Appl Stat 54:507–554. doi:10.1111/j.1467-9876.2005.00510Google Scholar
- 27. Rigby RA, Stasinopoulos DM, Heller G, Voudouris V (2014) The distribution Toolbox of GAMLSS. (http://www.gamlss.org/wp-content/uploads/2014/10/distributions.pdf)
- 28. Romanowicz RJ, Bogdanowicz E, Debele SE, Doroszkiewicz J, Hisdal H, Lawrence D, Meresa HK, Napiórkowski JJ, Osuch M, Strupczewski WG, Wilson D, Wong WK (2016) Climate change impact on hydrological extremes: preliminary results from the polish-norwegian project. Acta Geoph 64(2):477–509. doi:10.1515/acgeo-2016-0009
- 29. Strupczewski WG, Feluch W (1998), Investigation of trend in annual peak flow series. Part I. Maximum likelihood estimation. In: Proceedings 2nd international conference on climate and water—A 1998 perspective, 17–20 August 1998, Espoo, Finland, vol 1. p 241–250
- 30. Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modelling. Part II. Weighted least squares estimation. J Hydrol 248(1–4):143–151. doi:10.1016/S0022-1694(01)00398-5
- 31. Strupczewski WG, Singh VP, Mitosek HT (2001a) Non-stationary approach to at-site flood frequency modelling. Part III. Flood analysis of Polish rivers. J Hydrol 248(1–4):152–167. doi:10.1016/S0022-1694(01)00399-7
- 32. Strupczewski WG, Singh VP, Feluch W (2001b) Non-stationary approach to at-site flood frequency modelling. Part I. Maximum likelihood estimation. J Hydrol 248(1–4):123–142. doi:10.1016/S0022-1694(01)00397-3
- 33. Strupczewski WG, Mitosek HT, Kochanek K, Singh VP, Weglarczyk S (2006) Probability of correct selection from lognormal and convective diffusion models based on the likelihood ratio. Stoch Environ Res Risk Assess 20:152–163. doi:10.1007/s00477-005-0030-5
- 34. Strupczewski WG, Kochanek K, Feluch W, Bogdanowicz E, Singh VP (2009) On seasonal approach to nonstationary flood frequency analysis. Phys Chem Earth 34:612
- 35. Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I (2012) On seasonal approach to flood frequency modelling, Part I: flood frequency analysis of Polish rivers. Hydrol Process 26:705–716. doi:10.1002/hyp.8179
- 36. Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I, Feluch W (2016) Comparison of two nonstationary flood frequency analysis methods within the context of the variable regime in the representative polish rivers. Acta Geoph 64(1):206–236. doi:10.1515/acgeo-2015-0070
- 37. Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009a) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45:1–17
- 38. Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009b) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Water Resour 32:1255–1266. doi:10.1029/2008WR007645
- 39. Villarini G, Smith JA, Napolitano F (2010a) Nonstationary modelling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267
- 40. Villarini G, Vecchi GA, Smith JA (2010b) Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon Weather Rev 138:2681–2705
- 41. Villarini G, Smith JA, Serinaldi F, Ntelekos AA, Schwarz U (2012) Analyses of extreme flooding in Austria over the period 1951–2006. Int J Climatol 32:1178–1192. doi:10.1002/joc.2331
- 42. Vormoor K, Lawrence D, Heistermann M, Bronstert A (2015) Climate change impacts on the seasonality and generation processes of floods—projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrol Earth Syst Sci 19:913–931. doi:10.5194/hess-19-913
- 43. Vormoor K, Lawrence D, Schlichting L, Wilson D, Wong WK (2016) Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J Hydrol 538:33–48
- 44. Wilson D, Hisdal H, Lawrence D (2010) Has streamflow changed in the Nordic countries? Recent trends and comparisons to hydrological projection. J Hydrol 394(3–4):334–346
- 45. Yan H, Moradkhani H (2015) A regional Bayesian hierarchical model for flood frequency analysis. Stoch Env Res Risk Assess 29(3):1019–1036. doi:10.1007/s00477-014-0975-3
- 46. Yan H, Moradkhani H (2016) Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling. Nat Hazards 81(1):203–225. doi:10.1007/s11069-015-2070-6
- 47. Zhang Q, Gu X, Singh VP et al (2015a) Evaluation of flood frequency under non-stationarity resulting from climate indices and reservoir indices in the East River basin, China. J Hydrol 527:565–575. doi:10.1016/j.jhydrol.2015.05.029
- 48. Zhang D, Yan D, Wang YC, Lu F, Liu S (2015b) GAMLSS-based nonstationary modeling of extreme precipitation in Beijing–Tianjin–Hebei region of China. Nat Hazards 77:1037–1053. doi:10.1007/s11069-015-1638-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81c6327d-895a-415e-a26c-ab6ecdcbeb59