PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of reanalysis methods in structural mechanics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When designing structures, it is often necessary to re-analyse a structure that is different in some parts from the original one. As real structures are often complex, their analysis is therefore very challenging. In such cases, reanalysis methods are advantageously used. The aim of this paper is to approach the problem of solving the constructions using reanalysis method in which the time taken in solving algebraic equations is reduced. In particular, the purpose of this work is to demonstrate on a chosen system the time savings and the advantages of the chosen direct efficient reanalysis method for a given design problem. A basic condition for meeting these criteria is the modernization of computational procedures in the mechanics of compliant solids.
Rocznik
Strony
49--62
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
autor
  • Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering Technical University of Košice, Letná 9, 042 00 Košice, SLOVAKIA
  • Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering Technical University of Košice, Letná 9, 042 00 Košice, SLOVAKIA
autor
  • Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering Technical University of Košice, Letná 9, 042 00 Košice, SLOVAKIA
autor
  • Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering Technical University of Košice, Letná 9, 042 00 Košice, SLOVAKIA
autor
  • Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering Technical University of Košice, Letná 9, 042 00 Košice, SLOVAKIA
Bibliografia
  • [1] Kołakowski P., Wikło M. and Holnicki-Szulc J. (2008): The virtual distortion method-a versatile reanalysis tool for structures and systems.– Structural and Multidisciplinary Optimization, vol.36, No.3, pp.217-234.
  • [2] Kirsch U. (2008): Reanalysis of Structures (in Slovak).– Springer Netherlands, pp.93-120.
  • [3] Bocko J. (1989): Implementation of an effective reanalysis method.– Journal of Mechanical Engineering, vol.40, No.1, pp.59-67.
  • [4] Delyová I., Frankovský P., Bocko J., Trebuňa P., Živčák J., Schürger B. and Janigová S. (2021): Sizing and topology optimization of trusses using genetic algorithm.– Materials, vol.14, No.4, p.14, https://doi.org/10.3390/ma14040715.
  • [5] Rong F., Chen S.H. and Chen Y.D. (2003): Structural modal reanalysis for topological modifications with extended Kirsch method.– Computer Methods in Applied Mechanics and Engineering, vol.192, No.5-6, pp.697-707.
  • [6] Akgün M.A., Garcelon J.H. and Haftka R.T. (2001): Fast exact linear and non‐linear structural reanalysis and the Sherman–Morrison–Woodbury formulas.– International Journal for Numerical Methods in Engineering, vol.50, No.7, pp.1587-1606.
  • [7] Wu B. and Li Z. (2006): Static reanalysis of structures with added degrees of freedom.– Communications in Numerical Methods in Engineering, vol.22, No.4, pp.269-281.
  • [8] Cao H., Li H., Wang M., Huang B. and Sun Y. (2022): A structural reanalysis assisted harmony search for the optimal design of structures.– Computers and Structures, vol.270, Article ID.106844, https://doi.org/10.1016/j.compstruc.2022.106844.
  • [9] Huang G., Wang H. and Li G. (2014): A reanalysis method for local modification and the application in large-scale problems.– Structural and Multidisciplinary Optimization, vol.49, No.6, pp.915-930.
  • [10] Mo K., Guo D. and Wang H. (2020): Iterative reanalysis approximation‐assisted moving morphable component‐ based topology optimization method.– International Journal for Numerical Methods in Engineering, vol.121, No.22, pp.5101-5122.
  • [11] Materna D. and Kalpakides V.K. (2016): Nonlinear reanalysis for structural modifications based on residual increment approximations.– Computational Mechanics, vol.57, No.1, pp.1-18.
  • [12] Wu B., Li Z. and Li S. (2003): The implementation of a vector-valued rational approximate method in structural reanalysis problems.– Computer Methods in Applied Mechanics and Engineering, vol.192, No.13-14, pp.1773-1784.
  • [13] Tertel E., Kurylo P. and Papacz W. (2014): The stress state in the three layer open conical shell during of stability loss.– Acta Mechanica Slovaca, vol.18, No.2, pp.56-63.
  • [14] Bittnar Z. and Šejnoha J. (1996): Numerical methods in structural mechanics.– Thomas Telford, https://doi.org/10.1061/9780784401705.
  • [15] Wu Y., Wang H., Liu J., Zhang S. and Huang H. (2019): A novel dynamic isogeometric reanalysis method and its application in closed-loop optimization problems.– Computer Methods in Applied Mechanics and Engineering, vol.353, pp.1-23.
  • [16] Sága M., Vaško M., Handrik M. and Kopas P. (2019): Contribution to random vibration numerical simulation and optimisation of nonlinear mechanical systems.– Scientific Journal of Silesian University of Technology, Series Transport, vol.103, DOI: https://doi.org/10.20858/sjsutst.2019.103.11.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81c2108c-aba9-4f5f-8475-2d2947e312bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.