PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polycarbonate-based polyurethane – attractive materials for adhesives, binders and sealants production

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Poliuretany z segmentami oligowęglanowymi jako atrakcyjne materiały do produkcji klejów, spoiw i uszczelniaczy
Języki publikacji
EN
Abstrakty
EN
In the last few years, a very wide range of oligocarbonate diols, oligomers of carbonic acid esters terminated on both sides with hydroxyl groups, have appeared on the chemical market. They are mainly used for the production of flexible segments in precious grades of polyurethanes used in biomedical engineering. Poly(carbonate-urethane) due to high resistance to oxidizing and hydrolytic agents is also an attractive material for the production of adhesives and coatings with increased resistance to weather conditions. This paper presents the current state of knowledge on the methods of synthesis and main producers of oligomerols with carbonate groups, methods of poly(carbonate-urethane) synthesis and examples of its commercial applications.
PL
W ostatnich latach na rynku chemicznym pojawiła się bardzo bogata gama oligowęglanodioli, czyli oligomerycznych estrów kwasu węglowego, zakończonych z obu stron grupami hydroksylowymi. Są one wykorzystywane głównie do wytwarzania segmentów elastycznych w szlachetnych gatunkach poliuretanów stosowanych w inżynierii biomedycznej. Poli(węglano-uretany), dzięki dużej odporności na czynniki utleniające i hydrolityczne, stanowią także atrakcyjny materiał do produkcji klejów i powłok, trwałych w różnych warunkach atmosferycznych. W niniejszej pracy przedstawiono aktualny stan wiedzy dotyczący metod otrzymywania i głównych producentów oligomeroli z segmentami oligowęglanowymi, metod syntezy poliuretanów zawierających te segmenty oraz przykłady komercyjnych zastosowań poli(węglano-uretanów).
Czasopismo
Rocznik
Strony
497--508
Opis fizyczny
Bibliogr. 110 poz.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
  • Rzeszow University of Technology, Department of Polymers and Biopolymers, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Fridrihsone-Girone A., Stirna U., Misāne M. et al.: Progress in Organic Coatings 2016, 94, 90. https://doi.org/10.1016/j.porgcoat.2015.11.022
  • [2] Prociak A., Rokicki G., Ryszkowska J.: „Materiały poliuretanowe”, Wydawnictwo Naukowe PWN, Warszawa 2016.
  • [3] Akindoyo J.O., Beg M.D.H., Ghazali S. et al.: RSC Advances 2016, 6, 114453. https://doi.org/10.1039/C6RA14525F
  • [4] Wirpsza Z.: “Polyurethanes: Chemistry, Technology and Applications”, Ellis Horwood Ltd, London 1994.
  • [5] Pfister D.P., Xia Y., Larock R.C.: ChemSusChem 2011, 4, 703. https://doi.org/10.1002/cssc.201000378
  • [6] Tenorio-Alfonso A., Sánchez M.C., Franco J.M.: Journal of Polymers and the Environment 2020, 28, 749. https://doi.org/10.1007/s10924-020-01659-1
  • [7] Langanke J., Wolf A., Hofmann J. et al.: Green Chemistry 2014, 16, 1865. https://doi.org/10.1039/C3GC41788C
  • [8] Gu Y., Matsuda K., Nakayama A. et al.: ACS Sustainable Chemistry & Engineering 2019, 7, 6304. https://doi.org/10.1021/acssuschemeng.8b06870
  • [9] Trott G., Saini P., Williams C.: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2016, 374, 20150085. https://doi.org/10.1098/rsta.2015.0085
  • [10] Xia W., Sun X.-Y.: Macromolecular Chemistry and Physics 2018, 219, 1700478. https://doi.org/10.1002/macp.201700478
  • [11] Kuran W., Listoś T.: Macromolecular Chemistry and Physics 1994, 195, 401. https://doi.org/10.1002/macp.1994.021950202
  • [12] Zhang D., Boopathi S.K., Hadjichristidis N. et al.: Journal of the American Chemical Society 2016, 138, 11117. https://doi.org/10.1021/jacs.6b06679
  • [13] Scharfenberg M., Hilf J., Frey H.: Advanced Functional Materials 2018, 28, 1704302. https://doi.org/10.1002/adfm.201704302
  • [14] US Pat. 7 977 501 (2006).
  • [15] https://www.chemicals-technology.com/projects/bayer-co2-plastics/ (accessed 09.03.2020).
  • [16] Rokicki G., Kowalczyk T.: Polymer 2000, 41, 9013. https://doi.org/10.1016/S0032-3861(00)00273
  • [17] Pawłowski P., Rokicki G.: Polymer 2004, 45, 3125. https://doi.org/10.1016/j.polymer.2004.03.047
  • [18] Kricheldorf H.R., Lee S.-R., Weegen-Schulz B.: Macromolecular Chemistry and Physics 1996, 197, 1043. https://doi.org/10.1002/macp.1996.021970323
  • [19] Saito T., Takojima K., Oyama T. et al.: ACS Sustainable Chemistry & Engineering 2019, 7, 8868. https://doi.org/10.1021/acssuschemeng.9b00884
  • [20] Kuran W., Sobczak M., Listos T. et al.: Polymer 2000, 41, 8531. https://doi.org/10.1016/S0032-3861(00)00197-X
  • [21] Sun J., Ibrahim Aly K., Kuckling D.: RSC Advances 2017, 7, 12550. https://doi.org/10.1039/C7RA01317E
  • [22] Zhang J., Zhu W., Li C. et al.: RSC Advances 2014, 5, 2213. https://doi.org/10.1039/C4RA10466H
  • [23] Hua G., Olsén P., Franzén J. et al.: RSC Advances 2018, 8, 39022. https://doi.org/10.1039/C8RA08219G
  • [24] Song M., Yang X., Wang G.: RSC Advances 2018, 8, 35014. https://doi.org/10.1039/C8RA07141A
  • [25] Wang L., Xiao B., Wang G. et al.: Science China Chemistry 2011, 54, 1468. https://doi.org/10.1007/s11426-011-4284-0
  • [26] Wang Y., Yang L., Peng X. et al.: RSC Advances 2017, 7, 35181. https://doi.org/10.1039/C7RA05892F
  • [27] Tomczyk K.M., Parzuchowski P.G., Kozakiewicz J. et al.: Polimery 2010, 55, 366. https://doi.org/10.14314/polimery.2010.366
  • [28] Kim S.-M., Park S.-A., Hwang S.Y. et al.: Polymers 2017, 9, 663. https://doi.org/10.3390/polym9120663
  • [29] Bae J.Y., Chung D.J., An J.H. et al.: Journal of Materials Science 1999, 34, 2523. https://doi.org/10.1023/A:1004680127857
  • [30] Santerre J.P., Labow R.S., Duguay D.G. et al.: Journal of Biomedical Materials Research 1994, 28, 1187. https://doi.org/10.1002/jbm.820281009
  • [31] Kull K.L., Bass R.W., Craft G. et al.: European Polymer Journal 2015, 71, 510. https://doi.org/10.1016/j.eurpolymj.2015.08.015
  • [32] Kojio K., Furukawa M., Motokucho S. et al.: Macromolecules 2009, 42, 8322. https://doi.org/10.1021/ma901317t
  • [33] Ehrmann K., Potzmann P., Dworak C. et al.: Biomacromolecules 2020, 21, 376. https://doi.org/10.1021/acs.biomac.9b01255
  • [34] Zhu K.J., Hendren R.W., Jensen K. et al.: Macromolecules 1991, 24, 1736. https://doi.org/10.1021/ma00008a008
  • [35] Artham T., Doble M.: Macromolecular Bioscience 2008, 8, 14. https://doi.org/10.1002/mabi.200700106
  • [36] Rogulska M., Maciejewska M., Olszewska E.: Journal of Thermal Analysis and Calorimetry 2020, 139, 1049. https://doi.org/10.1007/s10973-019-08433-z
  • [37] Rogulska M., Kultys A., Puszka A.: Chemical Papers 2017, 71, 1195. https://doi.org/10.1007/s11696-016-0112-5
  • [38] Rogulska M., Kultys A., Pikus S.: Journal of Thermal Analysis and Calorimetry 2017, 127, 2325. https://doi.org/10.1007/s10973-016-5756-4
  • [39] Puszka A., Kultys A.: Polymers for Advanced Technologies 2017, 28, 1937. https://doi.org/10.1002/pat.4083
  • [40] Oh S.-Y., Kang M.-S., Knowles J.C. et al.: Journal of Biomaterials Applications 2015, 30, 327. https://doi.org/10.1177/0885328215590054
  • [41] Besse V., Auvergne R., Carlotti S. et al.: Reactive and Functional Polymers 2013, 73, 588. https://doi.org/10.1016/j.reactfunctpolym.2013.01.002
  • [42] Park H., Gong M.-S., Knowles J.C.: Journal of Materials Science: Materials in Medicine 2013, 24, 281. https://doi.org/10.1007/s10856-012-4814-0
  • [43] Kim H.-J., Kang M.-S., Knowles J.C. et al.: Journal of Biomaterials Applications 2014, 29, 454. https://doi.org/10.1177/0885328214533737
  • [44] Zia K.M., Barikani M., Bhatti I.A. et al.: Journal of Applied Polymer Science 2008, 110, 769. https://doi.org/10.1002/app.28533
  • [45] Amjed N., Bhatti I.A., Zia K.M. et al.: International Journal of Biological Macromolecules 2019. https://doi.org/10.1016/j.ijbiomac.2019.11.097
  • [46] Calvo-Correas T., Garrido P., Alonso-Varona A. et al.: Journal of Applied Polymer Science 2019, 136, 47430. https://doi.org/10.1002/app.47430
  • [47] Alves P., Coelho J.F.J., Haack J. et al.: European Polymer Journal 2009, 45, 1412. https://doi.org/10.1016/j.eurpolymj.2009.02.011
  • [48] Silva S.S., Menezes S.M.C., Garcia R.B.: European Polymer Journal 2003, 39, 1515. https://doi.org/10.1016/S0014-3057(03)00013-2
  • [49] Kadnaim A., Janvikul W., Wichai U. et al.: Carbohydrate Polymers 2008, 74, 257. https://doi.org/10.1016/j.carbpol.2008.02.007
  • [50] Solanki A., Mehta J., Thakore S.: Carbohydrate Polymers 2014, 110, 338. https://doi.org/10.1016/j.carbpol.2014.04.021
  • [51] Tai N.L., Adhikari R., Shanks R. et al.: International Biodeterioration & Biodegradation 2019, 145, 104793. https://doi.org/10.1016/j.ibiod.2019.104793
  • [52] Wojturska J.: Polimery 2020, 65, 125. https://doi.org/10.14314/polimery.2020.2.6
  • [53] http://tecnologiademateriais.com.br/mt/2016/cobertura_paineis/mineracao/ apresentaco es/ube.pdf (accessed 09.03.2020).
  • [54] Mazurek M.M., Tomczyk K., Auguścik M. et al.: Polymers for Advanced Technologies 2015, 26, 57. https://doi.org/10.1002/pat.3419
  • [55] Duff D.W., Maciel G.E.: Macromolecules 1991, 24, 387. https://doi.org/10.1021/ma00002a008
  • [56] Tomczyk K., Parzuchowski P.G., Kozakiewicz J. et al.: Polimery 2010, 55, 366. https://doi.org/10.14314/polimery.2010.366
  • [57] Kozakiewicz J., Rokicki G., Przybylski J. et al.: Polimery 2011, 56, 564. https://doi.org/10.14314/polimery.2011.564
  • [58] Mazurek-Budzyńska M., Behl M., Razzaq M.Y. et al.: Polymer Degradation and Stability 2019, 161, 283. https://doi.org/10.1016/j.polymdegradstab.2019.01.032
  • [59] Christenson E.M., Patel S., Anderson J.M. et al.: Biomaterials 2006, 27, 3920. https://doi.org/10.1016/j.biomaterials.2006.03.012
  • [60] Mazurek-Budzyńska M., Razzaq M.Y., Rokicki G. et al.: MRS Advances 2017, 2, 2529. https://doi.org/10.1557/adv.2017.471
  • [61] Mazurek M.M., Parzuchowski P.G., Rokicki G.: Journal of Applied Polymer Science 2014, 131, 39764. https://doi.org/10.1002/app.39764
  • [62] Bruin P., Veenstra G.J., Nijenhuis A.J. et al.: Die Makromolekulare Chemie, Rapid Communications 1988, 9, 589. https://doi.org/10.1002/marc.1988.030090814
  • [63] Fujimoto K.L., Guan J., Oshima H. et al.: The Annals of thoracic surgery 2007, 83, 648. https://doi.org/10.1016/j.athoracsur.2006.06.085
  • [64] Skarja G.A., Woodhouse K.A.: Journal of Biomaterials Science. Polymer Edition 1998, 9, 271. https://doi.org/10.1163/156856298x00659
  • [65] Mazurek M.M., Rokicki G.: Polish Journal of Chemical Technology 2013, 15, 80. https://doi.org/10.2478/pjct-2013-0073
  • [66] Mystkowska J., Mazurek-Budzyńska M., Piktel E. et al.: Journal of Polymer Research 2017, 24, 144. https://doi.org/10.1007/s10965-017-1296-2
  • [67] Mazurek M.M., Tomczyk K., Rokicki G.: Polymers for Advanced Technologies 2014, 25, 1273. https://doi.org/10.1002/pat.3312
  • [68] LP INFORMATION, INC: “Polycarbonate Diol Market Research: Global Status & Forecast by Geography, Type & Application (2015–2025)”, City of Industry, USA 2019.
  • [69] MarketsandMarkets INC: “Polycarbonate Diols Market by form (Solid, Liquid), Molecular Weight (g/mol) (<1000, 1000 – Below 2000, 2000 & Above), Application (Synthetic Leathers, Paints & Coatings, Adhesives & Sealants, Elastomers), and Region – Global Forecast to 2024”, Northbrook, USA 2019.
  • [70] Cherian A.: “Carbon Dioxide-Based Polycarbonate Polyols for Polyurethane Systems”, Adhesives and Sealants Industry 2014. https://www.adhesivesmag.com/articles/93368-carbon-dioxide-based-polycarbonate-polyols-for-polyurethane-systems (accessed 02.03.2020).
  • [71] Assen N. von der, Bardow A.: Green Chemistry 2014, 16, 3272. https://doi.org/10.1039/C4GC00513A
  • [72] Sur S.-H., Choi P.-J., Ko J.-W. et al.: International Journal of Polymer Science 2018, 2018, 1. https://doi.org/10.1155/2018/7370852
  • [73] EP Pat. 1 688 447 B1 (2008).
  • [74] WO Pat. 2 005/049 685 (2005).
  • [75] Michaelis T., Casselmann H.: “Synthetic leather without solvents”, European Coatings Journal 2009, 2. http://www.european-coatings.com/content/download/59871/677463/version/1/file/159152.pdf.
  • [76] US Pat. 5 156 900 (1992).
  • [77] Honarkar H.: Journal of Dispersion Science and Technology 2018, 39, 507. https://doi.org/10.1080/01932691.2017.1327818
  • [78] Špírková M., Hodan J., Kredatusová J. et al.: Progress in Organic Coatings 2018, 123, 53. https://doi.org/10.1016/j.porgcoat.2018.06.014
  • [79] Fuensanta M., Jofre-Reche J.A., Rodríguez-Llansola F. et al.: Progress in Organic Coatings 2017, 112, 141. https://doi.org/10.1016/j.porgcoat.2017.07.009
  • [80] Li Q., Guo L., Qiu T. et al.: Applied Surface Science 2016, 377, 66. https://doi.org/10.1016/j.apsusc.2016.03.166
  • [81] García-Pacios V., Costa V., Colera M. et al.: Progress in Organic Coatings 2011, 71, 136. https://doi.org/10.1016/j.porgcoat.2011.01.006
  • [82] García-Pacios V., Colera M., Iwata Y. et al.: Progress in Organic Coatings 2013, 76, 1726. https://doi.org/10.1016/j.porgcoat.2013.05.007
  • [83] Serkis M., Poręba R., Hodan J. et al.: Journal of Applied Polymer Science 2015, 132, 42672. https://doi.org/10.1002/app.42672
  • [84] Asensio M., Costa V., Nohales A. et al.: Polymers 2019, 11, 1910. https://doi.org/10.3390/polym11121910
  • [85] Wang J., Zhang H., Miao Y. et al.: Green Chemistry 2016, 18, 524. https://doi.org/10.1039/C5GC01373A
  • [86] Serkis M., Špírková M., Hodan J. et al.: Progress in Organic Coatings 2016, 101, 342. https://doi.org/10.1016/j.porgcoat.2016.07.021
  • [87] Hwang H.-D., Kim H.-J.: Journal of Colloid and Interface Science 2011, 362, 274. https://doi.org/10.1016/j.jcis.2011.06.044
  • [88] Rogulska M.: Polymer Bulletin 2019, 76, 4719. https://doi.org/10.1007/s00289-018-2632-3
  • [89] Rogulska M., Kultys A.: Journal of Thermal Analysis and Calorimetry 2016, 126, 225. https://doi.org/10.1007/s10973-016-5420-z
  • [90] Tenorio-Alfonso A., Sánchez M.C., Franco J.M.: Journal of Polymers and the Environment 2020, 28, 749. https://doi.org/10.1007/s10924-020-01659-1
  • [91] Liu Z., Huang J., Chen S. et al.: International Journal of Adhesion and Adhesives 2020, 96, 102456. https://doi.org/10.1016/j.ijadhadh.2019.102456
  • [92]Liu Z.-H., Huang J.-Q., Sun L.-J. et al.: Chinese Journal of Polymer Science 2018, 36, 58. https://doi.org/10.1007/s10118-018-2011-4
  • [93] Orgilés-Calpena E., Arán-Aís F., Torró-Palau A.M., et al.: International Journal of Adhesion and Adhesives 2016, 70, 218. https://doi.org/10.1016/j.ijadhadh.2016.07.009.
  • [94] Chung C.-H., Shih W.-C., Chiu W.-M.: e-Polymers 2019, 19, 535. https://doi.org/10.1515/epoly-2019-0057
  • [95] Yuan Y., Zhang Y., Fu X. et al.: Journal of Applied Polymer Science 2017, 134, 45292. https://doi.org/10.1002/app.45292
  • [96] Yuan L., Qiang P., Gao J. et al.: Journal of Applied Polymer Science 2018, 135, 45722. https://doi.org/10.1002/app.45722
  • [97] http://kchitp.ch.pw.edu.pl/projekty/carbopur-2 (accessed 28.02.2020).
  • [98] Zhu R., Wang Y., Zhang Z. et al.: Heliyon 2016, 2. https://doi.org/10.1016/j.heliyon.2016.e00125
  • [99] Brannigan R.P., Dove A.P.: Biomaterials Science 2016, 5, 9. https://doi.org/10.1039/C6BM00584E
  • [100] Agnol L.D., Dias F.T.G., Nicoletti N.F. et al.: Journal of Biomaterials Applications 2019, 34, 673. https://doi.org/10.1177/0885328219864901
  • [101] Seifalian A.M., Salacinski H.J., Tiwari A. et al.: Biomaterials 2003, 24, 2549. https://doi.org/10.1016/S0142-9612(02)00608-7
  • [102] Rashid S.T., Salacinski H.J., Button M.J.C. et al.: European Journal of Vascular and Endovascular Surgery 2004, 27, 608. https://doi.org/10.1016/j.ejvs.2004.01.020
  • [103] Eilenberg M., Enayati M., Ehebruster D. et al.: European Journal of Vascular and Endovascular Surgery 2019. https://doi.org/10.1016/j.ejvs.2019.11.004
  • [104] Ma Z., Hong Y., Nelson D.M. et al.: Biomacromolecules 2011, 12, 3265. https://doi.org/10.1021/bm2007218
  • [105] Khan I., Smith N., Jones E. et al.: Biomaterials 2005, 26, 633. https://doi.org/10.1016/j.biomaterials.2004.02.064
  • [106] Khan I., Smith N., Jones E. et al.: Biomaterials 2005, 26, 621. https://doi.org/10.1016/j.biomaterials.2004.02.065
  • [107] Sobczak M., Dębek C., Olędzka E. et al.: Journal of Polymer Science Part A: Polymer Chemistry 2012, 50, 3904. https://doi.org/10.1002/pola.26190
  • [108] Sirithep W., Morita K., Iwano A. et al.: Journal of Biomaterials Science, Polymer Edition 2014, 25, 1540. https://doi.org/10.1080/09205063.2014.929430
  • [109] Yin Y., Wu Q., Liu Q. et al.: New Journal of Chemistry 2019, 43, 4757. https://doi.org/10.1039/C8NJ06459H
  • [110] Mazurek-Budzyńska M., Razzaq M.Y., Tomczyk K. et al.: Polymers for Advanced Technologies 2017, 28, 1285. https://doi.org/10.1002/pat.3948
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81bf0ff1-fa77-4c15-9504-57a88ac9a5d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.