Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper aims to fill a gap between present and past research approaches to modelling flow in open channels. In particular, a history of the analytical solutions of a linearized St. Venant equation is presented. A solution of the linearized St. Venant equation, describing the response of a river channel to a single impulse forcing, the so called Instantaneous Unit Hydrograph (IUH), can be described using cumulants, defined as the moments of a logarithm of a variable. A comparison of analytical and numerical solutions of flood wave propagation under various flow conditions is given. The river reach of Biała Tarnowska is used as an illustration of both approaches. A practical application of simplified solutions to the emulator of a flood wave propagation is suggested showing a link between theory and practice.
Rocznik
Tom
Strony
15--21
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
autor
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
Bibliografia
- Castelletti A., Galelli S., Restelli M., Soncini-Sessa R., 2012, Data-driven dynamic emulation modelling for the optimal management of environmental systems, Environmental Modelling and Software 34, 30-43, DOI: 10.1016/j.envsoft.2011.09.003.
- Cholet C., Charlier J.-B., Moussa R., Steinmann M., Denimal S., 2017, Assessing lateral flows and solute transport during floods in a conduit-flow-dominated karst system using the inverse problem for the advection-diffusion equation, Hydrology and Earth System Sciences, 21 (7), 3635-3653, DOI: 10.5194/hess-21-3635-2017.
- Chow V.T., Maidment D.R., Mays L.W., 1988, Applied hydrology, McGraw Hill, 572 pp.
- Deymie P., 1939, Propagation d’une intumescence allongee, [in:] Procceddings of Fifth International Congress on Applied Mechanics, Verlag John Wiley & Sons, 537-544.
- DHI, 2003, MIKE 11 - A modeling system for river and channels: user guide?, DHI Water & Environment, avaiable at https://www.tu-braunschweig.de/Medien-DB/geooekologie/mike11usersmanual.pdf (data access 03.09.2018).
- Dooge J.C.I., 1973, Linear theory of hydrological systems, Agricultural Research Service, U.S. Department of Agriculture, 327 pp.
- Dooge J.C.I., Harley B.M., 1967, Linear routing in uniform open channels, [in:] Proceedings of the International Symposium in Hydrology, Fort Collins, Colorado, USA, 1, 57-63.
- Doroszkiewicz J., Romanowicz R.J., 2018, An influence of flow projection errors on flood hazard in future climate conditions, submitted for publication to Natural Hazards.
- Keefer T.N., 1974, Desktop computer flow routing, Journal of the Hydraulics Division, 100 (7) 1047-1058.
- Liggett J.A., Cunge J.A., 1975, Numerical methods of solution of the unsteady flow equations, [in:] Unsteady flow in open channels, vol. 2, K. Mahmood, V. Yevjevich (eds.), Water Resources Publications.
- Lighthill M., Whitman G., 1955, On kinematic waves: I. Flood movement in long rivers, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 229 (1178), 281-316, DOI: 10.1098/rspa.1955.0088.
- Lindström G., Johansson B., Persson M., Gardelin M., Bergström S., 1997, Development and test of the distributed HBV-96 hydrological model, Journal of Hydrology, 201 (1-4), 272-288, DOI: 10.1016/S0022-1694(97)00041-3.
- Litrico X., Pomet J.-B., Guinot V., 2010, Simplified nonlinear modelling of river flow routing, Advances in Water Resources, 33 (9), 1015-1023, DOI: 10.1016/j.advwatres.2010.06.00.
- MacArthur R., Devries J.J., 1993, Introduction and application of kinematic wave pouting techniques using HEC-1, TD-10, US Army Corps of Engineers, available at http://www.hec. usace.army.mil/publications/TrainingDocuments/TD-10.pdf (data access 02.08.2018).
- Masse P.R., 1939, Recherches sur la teorie des eaux courantes, [in:] Proceedings of the Fifth International Congress on Applied Mechanics, New York, 545-549.
- Moussa R., 1996, Analytical Hayami solution for the diffusive wave flood routing problem with lateral inflow, Hydrological Processes, 10 (9), 1209-1227, DOI: 10.1002/(SICI)1099-1085(199609)10:93.0.CO;2-2.
- Munier S., Lerat G., Belaud J., Litrico X., 2008, A new compact model coupling rainfall-runoff and routing model to support reservoir releases management, 13th IWRA World Water Congree, Montpellier, France, 16 pp.
- Nash J.E., 1959, Systematic determination of unit hydrograph parameters, Journal of Geophysical Research, 64 (1), 111- 115, DOI: 10.1029/JZ064i001p00111.
- Nash J.E., Sutcliffe J.V., 1970, River flow forecasting through conceptual models. Part I - A discussion of principles, Journal of Hydrology, 10 (3), 282-290, DOI: 10.1016/0022- 1694(70)90255-6.
- Romanowicz R.J., Beven K.J., Tawn J., 1996, Bayesian calibration of flood inundation models, [in:] Floodplain Processes, M.G. Anderson, D.E. Walling (eds.), Wiley, Chester, 333-360.
- Romanowicz R.J., Dooge J.C.I., Kundzewicz Z., 1988, Moments and cumulants of linearized St. Venant equation, Advances in Water Resources, 11 (2), 92-100, DOI: 10.1016/0309-1708(88)90042-5.
- Romanowicz R.J., Kiczko A., 2016, An event simulation approach to the assessment of flood level frequencies: risk maps for the Warsaw reach of the River Vistula, Hydrological Processes, 30 (14), 2451-2462, DOI: 10.1002/hyp.10857.
- Romanowicz R.J., Osuch M., 2011, Assessment of land use and water management induced changes in flow regime of the Upper Narew, Physics and Chemistry of the Earth. Parts A/B/C, 36 (13), 662-672, DOI: 10.1016/j.pce.2011.04.012.
- Romanowicz R.J., Young P.C., Beven K., Pappenberger F., 2008, A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting, Advances in Water Resources, 31 (8), 1048-1056, DOI: 10.1016/j.advwatres.2008.04.015.
- Saint-Venant A., 1871, Theorie du mouvement non permanent des eaux, avec application aux crues des rivieres et a l introduction de marees dans leurs lits, Comptes rendus de l’Academie des Sciences, 73, 147-154 and 237-240.
- Strupczewski W.G., Dooge J.C.I., 1996a, Relationships between higher cumulants of channel response. I: Properties of the linear channel response, Hydrological Sciences Journal, 40 (6), 675-687, DOI: 10.1080/02626669509491458.
- Strupczewski W.G., Dooge J.C.I., 1996b, Relationships between higher cumulants of channel response. II: Accuracy of linear interpolation, Hydrological Sciences Journal, 41 (1), 61-73, DOI: 10.1080/02626669609491479.
- Strupczewski W.G., Kundzewicz Z., 1979, Analysis of physical interpretation of parameters of linear conceptual models by means of moment matching method, J. Hydrol. Sci, 6, 143-159.
- Strupczewski W.G., Kundzewicz Z.W., 1992, Rapid flow model with lateral inflow, Hydrology Research, 23 (2), 57-72, DOI: 10.2166/nh.1992.0005.
- Strupczewski W.G., Napiórkowski J.J., 1990, Linear flood routing model for rapid flow, Hydrological Sciences Journal, 35 (1), 49-64, DOI: 10.1080/02626669009492404.
- Strupczewski W.G., Romanowicz R.J., 1991, Invariance of the IUH first cumulants of simplified linear St. Venant models, Advance in Water Resources, 14 (4), 175-182, DOI: 10.1016/0309-1708(91)90013-E.
- Young P., 1998, Data-based mechanistic modelling of environmental, ecological, economic and engineering systems, Environmental Modelling and Software, 13 (2), 105-122, DOI: 10.1016/S1364-8152(98)00011-5.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81bde39e-6d24-4037-983a-e6bd6bcf1fd6