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ANALYSIS OF HYPERBOLOID COOLING TOWER 
PROJECTION ON 2D SHAPE 

Andrzej Kwinta, Joanna Bac-Bronowicz

Summary

This paper undertakes the problem of mapping a hyperboloid cooling tower on a single plane. 
Measurements performed by ground-based laser scanning technology quickly deliver substan-
tial amounts of geometric data of the tower’s outer wall. The essence of the article is projection of 
the rotational hyperboloid on a plane. The shape of the hyperboloid cooling tower is not directly 
expandable to a single plane. Mapping a hyperboloid shape on a plane is, therefore, associated 
with distortions. This paper presents a comparison between cylindrical and conic projection of 
a hyperboloid cooling tower. The most popular method of mapping hyperboloid is cylindrical 
projection. The cylinder’s side surface is easily developed on the drawing sheet. For the hyperbo-
loid cooling tower, the biggest distortions occur in the latitudinal direction and reach the high-
est values at the top and bottom edges. The equation (13) describe distortion for the cylindrical 
projection. The equation (18) describe distortion for the conical projection. This paper presents 
results obtained from the performed measurement. The analysis found that cone mapping pro-
duces less distortion than cylindrical projection for the hyperboloid cooling tower. We think, 
that in conical projection, the shape of a hyperboloid cooling tower and theoretical conic shape 
have better corresponding together than in cylindrical projection.
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hyperboloid cooling tower • tower measurement and analysis • cartographic projection • laser 
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1.  Introduction 

Cooling towers are essential component of the industry infrastructure. They vary 
in size shape and type depending on the needs. Large facilities like power plants, oil 
refineries and steel manufacturing plants generally use hyperboloid cooling towers 
[Asadzadeh and Mehtab 2014, Lu et al. 2018]. Because of their distinctive shape and 
size, these objects easily attract attention. Unfortunately, these features also cause some 
inconveniences in measuring objects of this type [Feltens 2011].

As any engineering structure, a hyperboloid cooling tower is subjected to continu-
ous load and undergoes deformation [Bamu and Zingoni 2005, Kulkarni and Kulkarni 
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2014, Makuch 2018]. In addition, due to the tower’s size, the deformation is affected by 
winds [Abu-Sitta and Hashish 1973, Baillis et al. 2000]. 

Information on the shape of the object, its dimensions and changes of the outer wall 
is provided by methods of non-contact surveying and photogrammetry [Chisholm 
1977, Jasińska and Preweda 2004, Litwin and Piech 2013, Yang et al. 2016, Zhao 2018]. 
Especially the widespread introduction of terrestrial laser scanning allows one to 
quickly test a large number of points on objects which are difficult to access directly 
[Bajtala et al. 2011, Bala et al. 2012, Camp et al. 2013, Muszyński 2014, Gawronek and 
Mitka 2015, Kregar et al. 2015, Głowacki et al. 2016, Ioannidis et al. 2016, Pandžić 2016, 
Muszyński and Milczarek 2017, Makuch and Gawronek 2020].

3D results of measurements of the hyperboloid cooling tower can be viewed in 
special software [Makuch 2018]. However, for example, where the results of meas-
urements are intended to be used during repair works, it is necessary to present the 
outer wall of the cooling tower on a single plane (as a drawing). In this case, the image 
becomes distorted, because it is impossible to represent the hyperboloid directly on 
a plane and one needs to apply an appropriate projection [Snyder 1987]. This study 
compared the use of different cartographic projections to map the surface of the hyper-
boloid cooling tower on a single plane.

2. Hyperboloid 

The equation for the hyperboloid cooling tower outer wall surface can be found in the 
literature [Gould and Kratzig 1998]. Let us consider the general equation of the single 
hyperboloid:
 x

a
y
b

z
c

2

2

2

2

2

2 1� � �
 

 (1)

We shall accept a number of assumptions that simplify and define the object of the 
analysis and take into account additional markings as shown in Figure 1. We shall have: 
• the object of analysis is a rotational single-sheet hyperboloid,
• the height of the object is z = H,
• the radius of the base R0,
• the radius at the upper edge RH, 

Based on the above Figure 1, assumptions and dependencies (1), hyperboloid equa-
tion (radius) can be written as:
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The equation of hyperboloid points in a rectangular pattern:
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where: 
360 deg ≥ ϕ ≥ 0 deg
R0 ≥ Rc(z) ≥ RH

Source: Authors’ study

Fig. 1. Calculation scheme of hyperboloid (section through a hyperboloid)
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 The above equations show that the hyperboloid can be described by three param-
eters H, RH, R0. These parameters can be determined by least squares from measure-
ments of the cooling tower’s wall. Based on measurements of the structure (cooling 
tower), we obtain a  set of points in space that describes the object. Laser scanning 
facilitates measurements of cooling towers, because it allows one to measure a  large 
number of points in a brief period of time [Ioannidis et al. 2006, Camp 2013]. 

In order to determine the parameters of the hyperboloid, we need first to transform 
coordinates to a local coordinate system in which the axis z coincides with the axis of 
the hyperboloid, and zero is assigned to its lowest point. The coordinates of a point and 
its distance from the axis can be written down as follows:
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where:
Xi, yi, Zi – coordinates of the i-th measurement point,
n – quantity of measurement points,
Ri – distance of the point i from the axis of the cooling tower.

According to the method of least squares, parameters of the hyperboloid are deter-
mined in such a manner that the sum of the squares of distances between the hyperbo-
loid and the set of measurement points is minimal. For every point, we can record the 
linearized observation equation in the following form:
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where:
vi – deviation for a  single point (distance of the measuring point from the 

hyperboloid),

R H R R zc H i
0 0

0
0, , ,� �  – the approximate value of the radius of the hyperboloid.

In this way, a system of n equations with three unknowns is created, from which 
one can determine another system of normal equations. With such a system of normal 
equations, one can determine growth parameters of proxies. Since the calculations 
shall use approximate values of the parameters, they must be performed by iteration. 
Finally, hyperboloid parameters are calculated as follows:
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As a result of the calculations, one can also determine the average error of hyperbo-
loid to results rate, as well as errors in the set parameters.
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Because hyperboloid is the surface of the second-degree non-evolving on the plane, 
so to present it on the plane should be carried out projection on the plane or evolved 
surface. In our case analysis we give projection on two surfaces, which are evolve able, 
i.e., on the side surface cylinder and cone.

The map projection [Snyder 1987] is a  mathematically determined method of 
presenting the entire globe or a  part thereof on a  plane. More generally speaking, 
mapping is a mathematically described projection of any object on a drawing sheet. 
Over the centuries, humanity developed many cartographic representations to depict 
the Earth on a sheet [Grafarend and Krumm 2006]. With the development of astro-
nomical measurements there arose a need for imaging objects with irregular shapes 
[Nyrtsov 2003, Berthoud 2005]. In many cases, the shape of an object is not expandable 
to a plane, which causes mapping distortions. Linear mapping distortions are associ-
ated with a linear scale of the map. Linear scale mapping is the ratio of the distance of 
a projection to the length of the segment mapped. 

We shall examine the linear distortions in the main directions. If we mark the length 
of a section along the meridian (on vertical plane) as s and the length of one running 
along the parallel as l, we can formulate the following relationships [Snyder 1987]:

Source: Authors’ study

Fig. 2. Traces of intersections hyperboloid by a vertical and horizontal plane

dl

ds

On the hyperboloid surface, we can overlay the coordinate grid in the form of paral-
lels and meridians. The parallels are marked by intersections of the hyperboloid with 
horizontal planes, while the meridians are marked by intersections of the hyperboloid 
with vertical planes passing through the axis of the hyperboloid (Fig. 2).
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while the distortion coefficients in the mapping can be described as follows:
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where:
ds, dl – slight increases in length of sections of the hyperboloid,
ds', dl' – slight increases in length of sections on the map.

As shown in Figure 2 and Formula (3), the increase of length of the parallels can be 
described as:
 dl = R(z)dϕ (9)

and the slight increase in the length of the meridian can be written down as follows:

 ds2 = dR2 + dz2 (10)

which, on the basis of (3), leads to the relation:
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To calculate the length of the meridian arc, one should integrate relationship (11), 
leading to an elliptic integral of the second kind [Byrd 1954].

The above relationship can be used to determine the projection parameters and to 
define the distortions emerging in these projections.

3. Cylindrical projection 

In this projection, the surface on which it is overlaid is the side surface of a cylinder 
[Snyder 1987]. The cylinder’s side surface is then easily developed on the drawing sheet. 
The cylinder equation should be adjusted so that the cylinder axis coincides with the 
axis of the object, and the radius, which is constant, should determine the average point 
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distance of the cooling tower walls from the axis. In Figure 3, the calculation diagram 
is depicted.

According to Figure 3, the equation of the cylinder surface can be described as 
follows:
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where:
360 deg ≥ ϕ ≥ 0 deg
H ≥ z ≥ 0
 
In Figure 3, images of latitudes and longitudes in a cylindrical projection are indi-

cated. According to the accepted signatures and using the formulas (2), (9) and (11), 
the equation (8) for the cylindrical projection can be written as follows:
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Source: Authors’ study

Fig. 3. Calculation diagram of hyperboloid in cylindrical projection
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As can be seen from the relation (13), the distortion depends on the altitude merid-
ian coordinate z, while the latitudinal distortion depends also on the radius of the 
cylinder which we are mapping. The maximum value of the distortion can be deter-
mined from (8). Let us adopt the cylinder radius value based on the measurements as 
the arithmetic mean of the distance from the cooling tower shell axis. Based on (4) and 
(12) we have:

 R
R z

nw

c i
i

n
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1  (14)

Figure 4 below shows the distribution of coefficients of the distortion function z. 
Red color indicates the distribution of distortions for the cylindrical projection.

Source: Authors’ study

Fig. 4. The distribution plots of distortion in the direction of the axis z in cylindrical and conical 
projection
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As you can see from the above figure, the biggest distortions occur in the latitudinal 
direction and reach the highest values at the top and bottom edges of the hyperboloid.

4. Conical projection 

In this projection, the surface on which the projection is overlaid, is the side surface of 
a cylinder [Snyder 1987]. The side surface of the cone is developable on the drawing 
sheet. The equation of the cone must be chosen so that its axis coincides with the axis 
of the hyperboloid, and with a radius which is a linear function of the height that will 
meet the assumption of minimizing the sum of squares of the distances from the axis of 
the cooling tower outer walls. Figure 5 shows a diagram of the calculations.
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As shown in Figure 5, the cone equation can be described as follows:
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where:
360 deg ≥ ϕ ≥ 0 deg
H ≥ z ≥ 0
p, k – parameters of conic.

Let us assume the form of a cone (cone shape parameters) on the basis of measure-
ments in accordance with the method of least squares. In this case, we will have to deal 
with linear regression, so parameters can be calculated according to:
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Source: Authors’ study

Fig. 5. Calculation diagram of hyperboloid in conical projection
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Figure 5 contains images of latitude and longitude in the conical projection. We can 
determine the formulas for the mapping distortions in the main directions. Relevant 
images of latitudes and longitudes of the conical projection take the form of:
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which leads to the following formulas for mapping distortions:
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The results of the calculation of distortion in the conical projection are shown in 
blue in Figure 4. 

5. Example 

The distributions of mapping distortions of the imaging of the hyperboloid cool-
ing tower were analyzed on the basis of measurements of the real object. A detailed 
description of the object performed measurements and their processing into a point 
cloud are presented in M. Makuch’s doctoral dissertation [Makuch 2018] and publica-
tion [Makuch and Gawronek 2020].

The measurement of the cooling tower was performed with the use of the Riegl 
VZ-400 laser scanner. The data were obtained from four positions around the facility 
[Makuch 2018]. As the points binding the scans obtained from the individual positions, 
reference objects were used, in the form of clearly identifiable points from a point cloud 
of rotational and tippable discs with a diameter of 6”. The data, obtained by ground-
based laser scanner were pre-treated in the Cyclone software. Found in their own 
systems of point clouds, they were located and oriented relative to a single coordinate 
system. Measurements were carried out with an average error RMS = 0.002 m. Then, 
the cloud of points was manually cleared of erroneous and redundant observations and 
unified, limiting the amount of data obtained to a set of 35176 points (Fig. 6). Then, the 
data relevant to the geometry of the cooling tower walls were processed in two projec-
tions. All calculations were performed in specially prepared software “CTP1” (Colier 
Tower Projection), and contours were generated using Surfer software. 

The measurements and the study adopted a  local coordinate system, where the 
x-axis was directed east. In accordance with the formulas given in section 2, the deter-
mination of hyperboloid parameters was performed, yielding the following results:
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the average fit error of the theoretic rotational hyperboloid in relation to the measuring 
points was ±0.184 m. 

Based on the dependence from section 3, the cylinder radius was determined by the 
least squares method which amounted to:

Rw = 16.150 m

meanwhile, based on the formulas (16), the cone equation was determined:

R(z)s = –0.146z + 20.174

The results of the calculations are graphically presented in Figures 7 and 8. 

Source: Authors’ study

Fig. 6. Measurement points cloud
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The upper graphs show the distributions of maximum mapping distortions obtained 
from the equations (8), (13) and (18). On the lower graphs, you can see the distri-
butions of distortion between the cooling tower walls and the designated rotational 
hyperboloid in the corresponding projections. Contours in Figures 7 and 8 are not 
smooth lines, due to a dense sampling of the cooling tower and the dimensioning of 
the grid used in the interpolation of contours. The issue of selecting an appropriate 
measuring grid and interpolation grid is a critical issue in the processing and visualiza-
tion of measurement data [Bac-Bronowicz 2005].

Analyzing the results which are presented graphically in Figures 7 and 8 it must 
be held that much less mapping distortion emerge for the cone projection than for 
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Source: Authors’ study

Fig. 7. Results of calculation for cylindrical projection: a) maximum mapping distortions (8) 
and (13), b) distortion between the cooling tower walls and the designated rotational 
hyperboloid
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Source: Authors’ study

Fig. 8. Results of calculation for conical projection: a) maximum mapping distortions (8) 
and (18), b) distortion between the cooling tower walls and the designated rotational 
hyperboloid
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the cylindrical projection. In the cylindrical projection (Fig. 7) and cone projection 
(Fig. 8) the largest mapping distortions occur in the upper part of the cooling tower. 
Distribution of baseline deviations coat cold of hyperboloid is co-shaped in both projec-
tions. The greatest deformations of the shape of the cooling tower walls emerge in the 
north and north-east direction, as well as south and south-west. Given the mapping 
distortions shown in the upper graphs, the obtained conical projection is a better repre-
sentation of the real image.

6. Summary 

The specificity of hyperboloid cooling towers contributes to the fact that these objects 
should be particularly carefully supervised. In Polish conditions, the maintenance 
checks are of particular importance, since the majority of cooling towers exceeded their 
design lifetimes, after which threats to their security significantly increase. Properly 
executed diagnostics of the condition of the outer walls should clearly show any defor-
mation, loss, damage, and other anomalies on their surface. The article presented the 
problem of mapping a hyperboloid cooling tower on a plane, allowing a  clear, two-
dimensional representation of the state of the surface structure. The shape of the hyper-
boloid cooling tower is not directly expandable on a plane and its mapping involves 
the introduction of distortions. The presented comparison of cylindrical and tapered 
mapping of the hyperboloid cooling tower showed that the cone mapping produces 
less distortion than a  cylindrical projection. Carried out based on a  real-life object, 
measured by a terrestrial laser scanner method, the study has demonstrated that imag-
ing of a cooling tower outer walls on a plane using a conical projection result in a more 
readable and truer imaging representation of the object’s surface.
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