PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing and Modeling of Control Strategies Based on Multi-Objective Optimization for a PMSG Wind Turbine: A Study Based on the Grid Errors and Wind Speed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an independent wind energy conversion system was studied with the control strategies used to provide power specifically to the areas far from the grid. In this research, three strategies are designed and used in order to stabilize the output. This system contains a directed rectifier which is responsible for maximum power point tracking. Additionally, a common DC bus and a fully controlled inverter were designed. An LC filter was also used in the system in order to eliminate switching harmonics to a considerable extent and provide a reliable noiseless source for load supply. Since the power demand and the produced power of the turbine are variable and indistinguishable in each moment, a depletion load is also placed in the system. In this study, it was observed that the designed strategies prove the output stability in different sections and under different conditions with resonators and non-linear PI and PID controllers. The designed strategies were also supported by the simulation results.
Twórcy
autor
  • Acecr Institute of Higher Education, Kermanshah, Iran
  • Department of Electrical Engineering, Naein Branch, Islamic Azad University, Naein, Esfahan, Iran
  • Department of Electrical Engineering, Kashan Branch, Islamic Azad University, Kashan, Iran
  • Acecr Institute of Higher Education, Kermanshah, Iran
Bibliografia
  • 1. Jackson G, Liu, Söffker D. Multivariable Control of Large Variable-Speed Wind Turbines for Generator Power Regulation and Load Reduction. IFAC-PapersOnLine Volume 48, Issue 1, 2015; 48(1), 544–549.
  • 2. Kishor V, Ballal M S, Moharil R M. Investigation for Causes of Poor Power Quality in Grid Connected Wind Energy - A Review. Power and Energy Engineering Conference (APPEEC) 2012:34(1), 1–6.
  • 3. Abdelkafi A, Masmoudi A, Krichen L. Experimental investigation on the performance of an autonomous wind energy conversion system. Int J Electr Power Energy Syst 2013; 44(1), 581–90.
  • 4. Bhadane K, Ballal M S, Moharil R M. Wavelet transform based power quality analysis of grid connected wind farm - An investigation of Power Quality Disturbances. Advances in Electrical Engineering (ICAEE) International Conference on 2014; 84(8), 1–6.
  • 5. Masmoudi A, Krichen L, Ouali A. Voltage control of a variable speed wind turbine connected to an isolated load: experimental study. Energy Convers Manage 2012; 59, 19–26.
  • 6. Dincer F. The analysis on wind energy electricity generation status, potential and policies in the world. Renew Sust Energy Rev 2011; 15(9), 5135–42.
  • 7. Masmoudi A, Abdelkafi A, Krichen L. Electric power generation based on variable speed wind turbine under load disturbance. Energy 2011; 36(8), 5016–26.
  • 8. Battaiotto PE, Mantz RJ, Puleston PF. A wind turbine emulator based on a dual DSP processor system. Contr Eng Pract 1996; 4(9), 1261–6.
  • 9. Camblong H, Martinez de Alegria I, Rodriguez M, Abad G. Experimental evaluation of wind turbines maximum power point tracking controllers. Energy Convers Manage 2006; 47(18–19), 2846–58.
  • 10. González LG, Figueres E, Garcerá G, Carranza O. Maximum-power-point tracking with reduced mechanical applied to wind-energy-conversionsystems. Appl Energy 2010; 87(7), 2304–12.
  • 11. Ganji E, Mahdavian M. A Controlling Method of DFIG-Based Wind Turbine for Stability Improvement of Power Delivery to the Power Grid. Journal of Electrical Systems 2016:12(4), 591-611.
  • 12. Du W, Wang HF, Cheng S, Wen JY. Robustness of damping control implemented by energy storage systems installed in power systems. Int J Electr Power Energy 2011; 33(1):35–42.
  • 13. Kesraoui M, Korichi N, Belkadi A. Maximum power point tracker of wind energy conversion system. Renew Energy 2011; 36(10), 2655–62.
  • 14. Singh M, Khadkikar V, Chandra A. Grid synchronisation with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system. IET Power Electron 2011; 4(1), 122–30.
  • 15. Melício R, Mendes VMF, Catalão JPS. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation. Renew Energy 2010; 35(10), 2165–74.
  • 16. Rodriguez J, Rivera M, Kolar JW, Wheeler PW. A review of control and modulation methods for matrix converters. IEEE Trans Ind Electron 2012; 59(1), 58–70.
  • 17. Zhong L, Rahman MF, Hu WY, Lim KW, Rahman MA. A direct torque controller for permanent magnet synchronous motor drives. IEEE Trans Energy Convers 1999; 14(3), 637–42.
  • 18. Holdsworth L, Wu XG, Ekanayake JB, Jenkins N. Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances. IET Power Electron 2003; 150(3), 343–52.
  • 19. Li X, Su M, Sun Y, Dan H, Xiong W. Modulation strategies based on mathematical construction method for matrix converter under unbalanced input voltages. IET Power Electron 2013; 6(3), 434–45.
  • 20. Singh N, Agrawal V. A review on power quality enhanced converter of permanent magnet synchronous wind generator. Int Rev Electr Eng (IREE) 2013; 8(6), 1681–93.
  • 21. Chen Z, Spooner E. Voltage source inverters for high-power, variable-voltage DC power sources. IEEE Proc Gener Transm Distrib 2001; 148(5), 439–47.
  • 22. Xia C, Zhao J, Yan Y, Shi T. A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction. IEEE Trans Ind Electron 2014; 61(6), 2700–13.
  • 23. Ponmani C, Rajaram M. Compensation strategy of matrix converter fed induction motor drive under input voltage and load disturbances using internal model control. Int J Electr Power Energy Syst 2013; 44(1), 43–51.
  • 24. Singh B, Sharma S. SRF theory for voltage and frequency control of IAG based wind power generation. IEEE Int Conf Power Syst ICPS 2009, 2009:1–6.
  • 25. Han J. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics 2009; 56(3), 900–906.
  • 26. Jiang L, Wu Q.H. Nonlinear adaptive control via sliding-mode state and perturbation observer. IEE Proceedings – Control Theory and Applications 2002; 149(4), 269–277.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81bdc359-13b3-4b6a-a405-9218fd278b78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.