PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Theoretical Study on Nitroimine Derivatives of Azetidine as High-Energy-Density Compounds

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of derivatives of azetidine were designed by stepwise replacing the hydrogen atoms of azetidine with nitroimine groups. At the G3MP2 level, the heats of formation (HOFs), bond dissociation energies (BDEs), molecular densities (ρ0), detonation velocities (D), and detonation pressures (P) of the nitroimine-substituted azetidines were investigated to look for high-energy-density compounds (HEDCs). It was found that the nitroimine-substituted azetidines have high HOFs and large BDEs, and sufficient thermal and kinetic stability. Furthermore, the covalent bond strength in the four-membered ring, accompanied by intramolecular hydrogen bonds, are the determining factors for isomer stability. Based on our calculations, derivatives E and F have better detonation performance than RDX and can be regarded as potential high-energy-density compounds. This work may provide basic information for further study of the title compounds.
Rocznik
Strony
107--118
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
autor
  • School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
Bibliografia
  • [1] Huynh, M.H.V.; Hiskey, M.A.; Chavez, D.E.; Naud, D.L.; Gilardi, R.D. Synthesis, Characterization, and Energetic Properties of Diazido Heteroaromatic High-Nitrogen C−N Compound. J. Am. Chem. Soc. 2005, 127: 12537-12543.
  • [2] Gutowski, K.E.; Rogers, R.D.; Dixon, D.A. Accurate Thermochemical Properties for Energetic Materials Applications. II. Heats of Formation of Imidazolium-,1,2,4-Triazolium-, and Tetrazolium-Based Energetic Salts from Isodesmic and Lattice Energy Calculations. J. Phys. Chem. B 2007, 111: 4788-4800.
  • [3] Zhang, M.-X.; Eaton, P.E.; Gilardi, R. Hepta- and Octa-nitrocubanes. Angew. Chem. Int. Ed. 2000, 39: 401-404.
  • [4] Li, B.; Zhou, M.; Peng, J.; Li, L.; Guo, Y. Theoretical Calculations about Nitro-Substituted Pyridine as High-Energy-Density Compounds (HEDCs). J. Mol. Model. 2019, 25: 23-28.
  • [5] Liu, T.; Jia, J.; Li, B.; Gao, K. Theoretical Exploration on Structural Stabilities and Detonation Properties of Nitrimino Substituted Derivatives of Cyclopropane. Chin. J. Struct. Chem. (Jiegou Huaxue) 2019, 38: 688-694.
  • [6] Smith, G.D.; Bharadwaj, R.K. Quantum Chemistry Based Force Field for Simulations of HMX. J. Phys. Chem. B 1999, 103: 3570-3575.
  • [7] Brill, T.B.; Gongwer, P.E.; Williams, G.K. Thermal Decomposition of Energetic Materials. 66. Kinetic Compensation Effects in HMX, RDX, and NTO. J. Phys. Chem. 1994, 98: 12242-12247.
  • [8] Alavi, G.; Chung, M.; Lichwa, J.; D’Alessio, M.; Ray, C. The Fate and Transport of RDX, HMX, TNT and DNT in the Volcanic Soils of Hawaii: A Laboratory and Modeling Study. J. Hazard. Mater. 2011, 185: 1600-1604.
  • [9] Ariyarathna, T.; Ballentine, M.; Vlahos, P.; Smith, R.W.; Cooper, C.; Bohlke, J.K.; Fallis, S.; Groshens, T.J.; Tobias, C. Tracing the Cycling and Fate of the Munition, Hexahydro-1,3,5-Trinitro-1,3,5-Triazine in a Simulated Sandy Coastal Marine Habitat with a Stable Isotopic Tracer, (15)N-[RDX]. Sci. Total Environ. 2019, 647: 369-378.
  • [10] Eberly, J.O.; Mayo, M.L.; Carr, M.R.; Crocker, F.H.; Indest, K.J. Detection of Hexahydro-1,3-5-Trinitro-1,3,5-Triazine (RDX) with a Microbial Sensor. J. Gen. Appl. Microbiol. 2019, 64: 139-144.
  • [11] Archibald, T.G.; Gilardi, R.; Baum, K.; George, C. Synthesis and X-ray Crystal Structure of 1,3,3-Trinitroazetidine. J. Org. Chem. 1990, 55: 2920-2924.
  • [12] Thompson, C.A.; Rice, J.K.; Russell, T.P.; Seminario, J.M.; Politzer, P. Vibrational Analysis of 1,3,3-Trinitroazetidine Using Matrix Isolation Infrared Spectroscopy and Quantum Chemical Calculations. J. Phys. Chem. A 1997, 101: 7742-7748.
  • [13] Axenrod, T.; Watnick, C.; Yazdekhasti, H.; Dave, P.R. Synthesis of 1,3,3-Trinitroazetidine. Tetrahedron Lett. 1993, 34: 6677-6680.
  • [14] Marchand, A.P.; Rajagopal, D.; Bott, S.G.; Archibald, T.G. A Novel Approach to the Synthesis of 1,3,3-Trinitroazetidine. J. Org. Chem. 1995, 60: 4943-4946.
  • [15] Sućeska, M.; Rajić, M.; Matečić-Mušanić, S.; Zeman, S.; Jalový, Z. Kinetics and Heats of Sublimation and Evaporation of 1,3,3-Trinitroazetidine (TNAZ). J. Therm. Anal. Calorim. 2003, 74: 853-866.
  • [16] Hammerl, A.; Klapötke, T.M.; Nöth, H.; Warchhold, M.; Holl, G.; Kaiser, M.; Ticmanis, U. [N2H5]+2[N4C−NN−CN4]2–: a New High-Nitrogen High-Energetic Material. Inorg. Chem. 2001, 40: 3570-3575.
  • [17] Chavez, D.E.; Hiskey, M.A. 1,2,4,5-Tetrazine Based Energetic Materials. J. Energ. Mater. 1999, 17: 357-377.
  • [18] Li, B.; Chi, W.; Li, L. Theoretical Calculation about the High Energy Density Molecules of Nitrate Ester Substitution Derivatives of Prismane. Chin. J. Struct. Chem. 2016, 35: 1306-1312.
  • [19] Ambrose, J.F.; Nelson, R.F. Anodic Oxidation Pathways of Carbazoles: I. Carbazole and N‐Substituted Derivatives. J. Electrochem. Soc. 1968, 115: 1159-1164.
  • [20] de Vries, L.; Winstein, S. Neighboring Carbon and Hydrogen. XXXIX. Complex Rearrangements of Bridged Ions. Rearrangement Leading to the Bird-cage Hydrocarbon. J. Am. Chem. Soc. 1960, 82: 5363-5376.
  • [21] Liebman, J.F.; Greenberg, A. A Survey of Strained Organic Molecules. Chem. Rev. 1976, 76: 311-365.
  • [22] Marchand, A.P.; Wu, A. Syntheses of New Substituted Pentacyclo[5.4.0.02,6.03,10.05,9] Undecanes: a Novel Synthesis of Hexacyclo[6.2.1.13,6.02,7.04,10.05,9]dodecane (1,3-Bishomopentaprismane). J. Org. Chem. 1986, 51: 1897-1900.
  • [23] Nielsen, A.T.; Nissan, R.A.; Vanderah, D.J.; Coon, C.L.; Gilardi, R.D.; George, C.F.; Flippen-Anderson, J. Polyazapolycyclics by Condensation of Aldehydes with Amines. 2. Formation of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-Hexaazatetracyclo[5.5.0.05.9.03,11] Dodecanes from Glyoxal and Benzylamines. J. Org. Chem. 1990, 55: 1459-1466.
  • [24] Schulman, J.M.; Disch, R.L. Ab Initio Heats of Formation of Medium-sized Hydrocarbons. The Heat of Formation of Dodecahedrane. J. Am. Chem. Soc. 1984, 106: 1202-1204.
  • [25] Politzer, P.; Murray, J.S. High Performance, Low Sensitivity: Conflicting or Compatible? Propellants Explos. Pyrotech. 2016, 41: 414-425.
  • [26] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, J.T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03. Gaussian, Inc., Pittsburgh PA, 2003, ISBN O-9636769-6-2.
  • [27] Curtiss, L.A.; Raghavachari, K.; Redfern, P.C.; Stefanov, B.B. Assessment of Complete Basis Set Methods for Calculation of Enthalpies of Formation. J. Chem. Phys. 1998, 108: 692-697.
  • [28] Curtiss, L.A.; Raghavachari, K.; Redfern, P.C.; Pople, J.A. Assessment of Gaussian-2 and Density Functional Theories for the Computation of Enthalpies of Formation. J. Chem. Phys. 1997, 106: 1063-1079.
  • [29] Politzer, P.; Lane, P. Comparison of Density Functional Calculations of C–NO2, N–NO2 and C–NF2 Dissociation Energies. J. Mol. Struct.: THEOCHEM 1996, 388: 51-55.
  • [30] Harris, N.J.; Lammertsma, K. Ab Initio Density Functional Computations of Conformations and Bond Dissociation Energies for Hexahydro-1,3,5-trinitro-1,3,5-triazine. J. Am. Chem. Soc. 1997, 119: 6583-6589.
  • [31] Kamlet, M.J.; Jacobs, S.J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives. J. Chem. Phys. 1968, 48: 23-35.
  • [32] Politzer, P.; Martinez, J.; Murray, J.S.; Concha, M.C.; Toro-Labbé, A. An Electrostatic Interaction Correction for Improved Crystal Density Prediction. Mol. Phys. 2009, 107: 2095-2101.
  • [33] Owens, F.J. Calculation of Energy Barriers for Bond Rupture in Some Energetic Molecules. J. Mol. Struct.: THEOCHEM 1996, 370: 11-16.
  • [34] Li, B.; Li, L.; Chen, S. Thermal Stability and Detonation Character of Nitro-Substituted Derivatives of Imidazole. J. Mol. Model. 2019, 25: 298-304.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81bc0089-7c46-4855-aa52-123db24ad312
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.