PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Internal modified-layer formation mechanism into silicon with nanosecond laser

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: When a permeable nanosecond pulse laser which is condensed into the inside of a silicon wafer is scanned in the horizontal direction, a belt-shaped polycrystal layer is formed at an arbitrary depth in the wafer. Applying tensile stress perpendicularly to this belt-shaped modified-layer, silicon wafer can be separated easily into individual chip without creating any damage to the wafer surface comparing with the conventional blade dicing method, because the cracks that spread from the modified layer up and down progress to the surface. This technology is called “stealth dicing” (SD), and attracts attentions as a novel dicing technology in semiconductor industries. The purpose of this study is to clarify the formation mechanism of modified layer. Design/methodology/approach: We paid attention to an experimental result that the absorption coefficient varies with temperature. We analyzed a coupling problem composed of condensed laser propagation in a silicon single crystal, laser absorption, temperature rise, and heat conduction. Simple thermal stress analysis was also conducted based on those results. Findings: As a result, formation mechanism of the modified layer could be explained clearly. Temperature dependence of absorption coefficient is the most important factor of the modified layer formation. Research limitations/implications: The present analysis can be applied to find the optimum laser irradiation condition for SD method, and it is a future subject to confirm it experimentally. Practical implications: It was supported by the present analysis that the problem of thermal effect on the active region can be solved by the SD method. Originality/value: SD method for wafer dicing is original firstly and it is valuable that formation mechanism of the modified layer in SD method was clarified theoretically.
Rocznik
Strony
381--384
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Division Materials and Manufacturing Science, Osaka University, 2-1, Yamada-Oka, Sita, Osaka, Japan
autor
  • Hamamatsu Photonics K. K., 314-5, Shimo-Kanzo, Iwata, Shizuoka, Japan
autor
  • Hamamatsu Photonics K. K., 314-5, Shimo-Kanzo, Iwata, Shizuoka, Japan
autor
  • Hamamatsu Photonics K. K., 314-5, Shimo-Kanzo, Iwata, Shizuoka, Japan
Bibliografia
  • [1] F. Fukuyo, K. Fukumitsu and N. Uchiyama: The Stealth Dicing Technologies and Their Application, Proceedings of 6th Laser Precision Microfabrication, (2005).
  • [2] J. Ikeno, Y. Tani and A. Fukutani: Development of Chipping-Free Dicing Technology Applying Electrophoretic Deposition of Ultrafine Abrasives, Annals of CIRP 41/1 (1992) 351-354.
  • [3] W. Peng, X.F. Xu and L.F. Zhang: Improvement of a Dicing Blade Using a Whisker Direction-Controlled by an Electric field, Journal of Materials Processing Technology 129 (2002) 377-379.
  • [4] I.-H. Cho, S.-C. Jeong, J.-M. Park and H.-D. Jeong: The Application of Micro-Groove Machining for the Model of PDP Barrier Ribs, Journal of Materials Processing Technology 113 (2001) 355-359
  • [5] S.B. Lee, Y. Tani, H. Ssato and T. Enomoto: Development of a Dicing Blade with Photopolymerizable Resins for Improving Machinability, Annals of CIRP 54/1 (2005) 293-296.
  • [6] G.C. Lim, A.T. Mai, D. Low and Q. Chen: High Quality Laser Microcutting of Difficult-to-Cut Materials - Copper and Si Wafer, Proceedings of 21st International Congress on Applications of Lasers and Electro-Optics, (2002).
  • [7] R. Ebutt, S. Danyluk and I. Weisshaus: Method to Evaluate Damage Induced by Dicing and Laser Cutting of Si Wafers, Microstructural Science 23 (1996) 89-94.
  • [8] Y. Ishizaka, I. Fukumoto, E. Ohmura and I. Miyamoto: Three-Dimensional Molecular Dynamics Simulation on Laser Materials Processing of Silicon, Proceedings of 17th International Conference on Applications of Lasers and Electro Optics 85, Sec. A (1998) 55-63.
  • [9] K. Watanabe, Y. Ishizaka, E. Ohmura and I. Miyamoto: Analysis of Laser Ablation Process in Semiconductor Due to Ultrashort Pulsed Laser with Molecular Dynamics Simulation, Proceedings of SPIE 3933 (2000) 46-55.
  • [10] T. Corboline, C.E. Rea and C. Dunsky: High Power UV Laser Machining of Si Wafers, Proceedings of SPIE 5063, Fourth International Symposium on Laser Precision Microfabrication, (2003), 495-500.
  • [11] T. Lizotte: Laser Dicing of Chip Scale and Silicon Wafer Scale Packages, Proceedings of IEEE/CMPT/SEMI Int’l Electronics Manufacturing Technology Symposium (2003) 1-5.
  • [12] M. Li: Effect of Laser Parameters on Semiconductor Micromachining Using Diode-Pumped Solid-State Lasers, Proceedings of 21st International Congress on Applications of Lasers and Electro-Optics, LMF Sec. B (2003) 7-15.
  • [13] D. Perrottet, A. Spiegel, F. Wagner, R. Housh, B. Richerzhagen and J. Manley: Particle-free Semiconductor Dicing Using the Water Jet Guided Laser Technology, Proceedings of 21st International Congress on Applications of Lasers and Electro-Optics (2004).
  • [14] P. Chall: ALSI’s Low Power Multiple Beam Technology for High Throughput and Low Damage Wafer Dicing, Proceedings of 65th Laser Materials Processing Conference, (2005), 211-215.
  • [15] S.P. Parker, et al. ed.: Dictionary of Physics, 2nd ed. (1997) McGraw-Hill.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81baf911-f0c7-46d5-9ac5-509a0b1ef32e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.