
From UML Object Behavior Description
into Petri Net Models

Towards Systematic Development of Embedded Systems

Wojciech Szmuc, and Tomasz Szmuc

 Abstract—The paper describes a translation of object
behavior specified by UML into semantically equivalent Petri net
models. The translation focuses on object behavior with event
handling implemented in UML. The resulted Petri net allows to
check UML model properties not only by simulation but also in
formal way. For possibly closest congruence between UML and
Petri net model an event queue is defined. Each state machine
assigned to an object has its own event queue which is available
as long as the machine exists. It allows modeling not just a simple
message passing but also cases, when state machine cannot
handle an event. A higher priority of sub-machine's event queue
is also considered. The presented solution is a part of wider
conversion algorithm from UML model into Petri nets [12].
However, the paper is intended to describe the issue in such a
detailed way and focuses on aspects crucial for embedded
systems development.

Index Terms—UML, state machine, event, queue, object,
Petri, formal, model

I. INTRODUCTION

MBEDDED systems are built as a set of cooperating
concurrent processes (threads, tasks), interacting deeply

with their environment by reaction on events, reading data and
sending computed control values. Correctness requirements
(of such system) focus not only on functional and time
compliance of response, but also deal with dependability of
running system in changing environment and possible failures
of hardware devices installed in the system or its environment.
High degree of concurrency makes system more flexible, but
increases fuzziness of relation between input demand (e.g. for
service of input signals) and response by the system. This
feature makes difficult verification and validation (V&V) of
embedded systems and significantly increases development
costs. Therefore research aiming at improvement of V&V and
making the process systematic and more efficient are of great
interest. A role of formal methods in the improvement is
crucial for development safety embedded systems, see [11] for
details.
UML is one of the most widely spread instruments for system
modeling. Although, it has many advantages such as different
modeling perspectives, there is one important drawback – the
standard [2, 6] does not define a formal model, so semantics of
UML artifacts may be sometimes interpreted in many ways.

W. Szmuc and T. Szmuc are with the Department of Applied Computer
Science, AGH University of Science and Technology, Kraków, Poland
(e-mails: wszmuc@agh.edu.pl, tsz@agh.edu.pl)

Therefore, many conversion algorithms were proposed to
build formal model representing some UML diagrams [12].
Usually the main focus is set to visible part of diagrams
conversion and does not take into account aspects influencing
system behavior but not visible on diagrams [5, 10]. Object
behavior and event handling are crucial aspects in
development of embedded systems. Analysis of correct
system/component response on events is a challenge in
embedded system V&V. Formal modeling enables proving
required properties making the verification systematic and
therefore more efficient and solvable (esp. in the case of
complicated multi-processes systems). The paper focuses on
conversion of the two main concepts state machine describing
class/object behavior and event handling specified
communication.

Colored Petri nets [7] have been chosen for modeling
translated constructs. The formalism provides several
constructs (coloring, hierarchical description) allowing
modeling of complicated structures. Moreover, many
modeling/analysis tools exist. For visualization purposes CPN
Tool 4.0 was used to build and verify proprieties of proposed
solutions. Several attempts of translation from UML into Petri
nets have been carried out. Some representative examples may
be found in [2-5, 8-10]. More detailed analysis is given in [12].
The main advantage of the proposed solution is complete
approach for the transformation, taking into account wide
spectrum of UML constructs. This scope makes possible
translation of UML artifacts defined during analysis and
design phases of development process. The paper focuses on
behavioral perspective in the context of objects, the main
challenge in embedded systems design and verification. The
contents is modified and extended version of the paper [13].
State machine constructs are added to the domain and their
integration with event handling has been carried out.

II. CLASS AND OBJECT REPRESENTATION

Events handling influences state machines assigned to
objects. Therefore, to understand the concept class
representation is needed to be described. Fig 1. depicts Petri
net for object modeling. It is composed of constructor, object
counter, destructor and a place, where object is stored for
processing.

E

Fig. 1. Class representation in Petri net

Constructor (transition “construction”) is started by putting
a token in place “constructorCall”. This increases value of
counter of objects (“1`c++1`(c+1)” to instanceCounter),
activates events queue (“startEventQueue”) and creates new
object which stores its number and attributes. Additionally, a
number of created object is returned (“objectIdentifier”) to
assign the object to proper user.

When in place “readyObject”, object could start state
machine execution.

Call of destructor needs, as an argument, object number to
be destroyed. “destruction” takes object token, stops event
queue by sending number of object which is destroyed and
decreases number of instances (“c” from “instanceCounter”).
The object that is destroyed has to be the one, that destructor
was called to (“[#number ob=nr andalso c=nr]”).

Definition of the net requires following declarations:

colset float=real;
colset counter=int;
var c, nr: counter;
colset object=record number: counter*sum: float*count: counter;
var ob: object;

III. TRANSLATION OF STATE MACHINE DIAGRAM

State machine diagram describes behavior providing
together with class diagram modeling of whole artifact.
Considering the modeling scope, state machine is assigned to
class of which behavior it specifies. This paragraph describes
translation of most commonly used elements of state machine
diagram. Other, more sporadic constructs are described in [12].

The main elements in the state machine are state and
transition. State is represented in Petri nets by place. Since
states with the same names are considered as one when
translating a fusion should be assigned to them. Transition
which provides control and data flow between states is
converted as transition between places.

However, due to the fact the behavior of transition in UML
could be more complex several transitions (with separating
places) may need to be used. In the state diagram the transition
could be fired by incoming event (described in next paragraph)
or guard. The guard allows to transmit data or control if its
expression evaluates to true. The same requirements should
meet guard in Petri nets thus translation should just pay
attention on syntax (e.g. inequality in UML is designated as
“!=” whilst in Petri nets as “<>”).

Transition provides also data processing functionality,
which could be realized with Petri nets in two steps. Firstly, in
the arc inscription of incoming (to the transition) arc the value
should be assigned to the variable. Secondly, in the inscription
of outgoing arc expressions could be evaluated on variables
assigning value to returned token.

The guard concept could be used in more expanded
construct called decision. A simple example is presented in
Fig. 2. It depicts a part of control algorithm for heating and air
conditioning system. The first symbol is responsible for
calculation of the difference between the set and the measured
temperature. Next symbols – guards split the control flow to
3 cases: heating, cooling and measuring. The last mode (with
“else”) is chosen when the measured temperature is within the
limits.

Fig. 2. Decision representation in UML

The corresponding Petri net is presented in Fig. 3. It starts
from calculation of the difference between temperature values
(“ts-tm”) in arc inscription incoming to the place “result”. The
colset of the place is of integer type. From the place
3 transitions could take a token. First with guard “[td>2]”
which is fired, when measured temperature (“tm”) is lesser by
more than 2 from set temperature (“ts”). The next transition
with guard “[td< ~2]” is responsible for cooling. And the last
one represents “else” branch in decision construct. This place
does not have any guard however, its priority is set
to “P_LOW”. This guaranties deterministic behavior
of the proposed net.

Fig. 3. Decision representation in Petri net

IV. SIMPLE EVENT HANDLING CONSTRUCTS

The following description focuses only on most important
aspects of constructs. Object identification is not described
(works like in paragraph II) despite it appears in the net.

A. Event queue

Relevant color set has been defined in order to handle
different events. String type defined below is sufficient for
simple cases:

colset events=string;
var evs: events;

Event queue is stored in a token defined as list:

colset elist: list events;
var l: elist;
colset evlist=record nrlist: elist*number: counter;

Petri net for event queue is depicted in Fig. 4. Place
“constructor” is connected either as port place in substitution
transition or by fusion with net representing class. Token in
this place allows queue to be activated. Transition “activate”
sends one token to place “isActive” and another to place
“queue”. After this step place “queue” contains token with
empty list (“[]”).

Place “destructor” is also connected with net representing
class. This place is used to deactivate event queue. If a token
is present in this place a “deactivate” transition could be fired.
This transition takes token from place “isActive” and “queue”.

Proper ratio in putting tokens in places “constructor” and
“destructor” is provided by the net of class.

Fig. 4. Event queue model in Petri net

When event queue is active an event could be received.
New event is represented as token in place “port”. It is then
passed by transition “pass” to place “newEvent”. This part of
net is prepared to assign restrictions (as guard of transition) to
events that could be received by certain event queue. After
that step transition “append” could be fired. It takes a token
from place “isActive” and “queue”. New event is appended at
the end of the list (“ins l eve”). If there is no token in place
“isActive”, transition “discard” is fired. To prevent non
deterministic behavior when event queue is active, transition
“append” has priority set to “P_HIGH”.

When receiver is ready to handle event, it should put token
in place “nextEvent”. Transition “takeNextEvent” takes list of
events from place “queue” and passes first event (“hd(l)”) to
place “eventToHandle” if list is not empty (“length(l)>0”).
List without previously first element (“tl(l)”) is returned to
place “queue”.

B. Receive construct

To receive an event receiver has to notify receive construct.
Since this part is shared there is a need to distinguish who is
waiting for the event. Therefore, the following form of
addressing is defined:

colset receiver=int;
var reci: receiver;
colset receiverr=record re: counter*number: counter;
colset event=record ev: events*re: receiver;
colset eventr=record evs: events*re: receiver*number: counter;

Petri net for event queue is depicted in Fig. 5. Place
“receive” is connected with net representing behavior (state
machine) which accepts certain event. Token in this place is a
record containing information about id of receiver and desired
event. Place “eventToHandle” is connected with place, with
the same name in event queue. When a new event occurs it
could be handled by one of two transitions. “discarding”
transition takes token form places “receive” and
“eventToHandle” and compares desired event with released by
event queue. The transition could be fired if received signal is
not the desired one (“eve<>evt”). “receiving” transition is
fired, when provided event is the same as desired. This
transition sends id of receiver to place “received”. The place is
connected to net representing behavior. Since this place is
shared, the proper part of behavior is identified by receiver id.

Fig. 5. Petri net for receive construct

This solution has been chosen in order to ensure proper
event passing in the case when there is more than one receiver
which could handle it.

C. Save construct

Save construct is used to prevent discarding event. It is
used, when behavior is not currently in the state that could
handle the event but is supposed to do it later. This construct
should be put between place, where event is released from
event queue and corresponding place in receive construct.

Petri net for save construct is depicted in Fig. 6. Place
“save” is connected with net representing behavior. Token in
this place defines event, which should be saved.
“eventToHandle” is connected with event queue. When this
place will contain event to save, transition “saving” will be
fired. This transition sends event to “port” what results in
appending event to the end of event queue. The transition also
allows event queue to release subsequent event (“nextEvent”).
If there is no need to save event, “noSaving” transition is fired.
To prevent non deterministic behavior when saving an event,
transition “saving” has priority set to “P_HIGH”. Place
“eventToHandleS” should be connected with place
“eventToHandle” in receive construct.

Fig. 6. Save construct in Petri net

V. MORE COMPLEX CASES

The proposed event handling solutions could be used also
for modeling timeouts. To achieve this feature definition of
color set “timed” should be added:

colset events=sting timed;

Example arc inscription (to “port”) to send timeout event
for 10 time units:

“timeout”@+10

Events could have parameters what implies change in
color set definition. Example definition for two parameter
events:

colset nm=string;
colset tp=int;
colset events=record nm: str*frst: tp*scnd: tp;

Since it is not possible to assign more than one color set to
a place, destined type used in signal handling should be
defined to allow passing each of available events.

In UML it is possible to address events to certain objects.
This could be achieved in Petri nets by adding another
component to record representing address. To assure correct
event routing additional restrictions may need to be added to
transition “pass” in event queue.

When defining composite states place “eventToHandle” of
event queue should be connected with place “eventToHandle”
in sub-machine receive construct. If event is discarded it
should be passed to upper-level machine receive construct. It
could be carried out by adding place “discarded” in sub-
machines receive construct and connecting with place
“eventToHandle” in upper-level machine. This assures higher
priority of receiving events in composite state then in upper-
level machine.

Event queue should be activated before any other
operations performed by constructor. This requirement should
be fulfilled by net representing class.

VI. SUMMARY

The described solution allows transformation of UML
architecture (class diagram) and behavior (state machine
diagram) with event handling model into equivalent Petri net.
Presented constructs i.e. class, state machine, event queue,
receive and save were tested using available in CPN Tools
methods. Starting from simple constructs general concept has
been proposed, and then more detailed models has been
refined. The elaborated constructs are building blocks of
algorithm for automatic translation from UML into equivalent
Petri nets. The obtained formal model may be used to prove
required properties of system with event handling feature.
Proving properties may be carried out directly using CPN
Tools, as well as in indirect way, i.e. taking the generated
coverability tree as a model for proving properties described
by other formalism, e.g. Temporal Logic. The transformation
together with others proposed in [12] may be used for to
construct parallel path in modeling of artifacts during
development using UML language. The additional formal path
allows to prove properties of the formal models [11] which are
equivalent to the UML artifacts. The approach will make the
verification process more systematic and complete supporting
development of correct embedded/real-time systems. This is
especially important for development of safety related systems,
including intelligent/autonomous cars being currently a
promising area in research and applications.

REFERENCES
[1] Bauskar B. E. Mikolajczak B.: Abstract Node Method for Integration of

Object Oriented Design with Colored Petri Nets, Information
Technology: New Generations, 2006. ITNG 2006. Third International
Conference on Year: 2006 Pages: 680 – 687

[2] Baresi L., Pezze M.: On Formalizing UML with High-Level Petri Nets.
Concurrent Object-Oriented Programming and Petri Nets. Lecture Notes
in Computer. Springer Berlin Heidelberg, 2001 Pages: 276-304

[3] Bernardi S., Donatelli S., Mersehuer J.: From UML Sequence Diagrams
and Statecharts to Analyzable Petri Nets Models. Proceedings of the 3rd
International Workshop on Software and Performance. WOPS'02. ACM,
2002 Pages: 35-45

[4] Dennis A., Wixom B., Tegarden D.: Systems Analysis and Design with
UML. John Wiley & Sons, 2012

[5] Feng X. Liu Q. Wang Z.: AUV Modeling and Analysis using a Colored
Object-Oriented Petri Net, Computer and Computational Sciences, 2006.
IMSCCS '06. First International Multi-Symposiums on Year: 2006,
Volume: 2 Pages: 405 – 409

[6] http://www.omg.org/spec/UML/2.5
[7] Jensen K., Kristensen L.: Coloured Petri nets. Modelling and Validation

of Concurrent Systems. Springer, Heidelberg, 2009
[8] Kerkouche E., Chaoui A., Bourenane E. B., Labbani O.: A UML and

Colored Petri Nets Integrated Modeling and Analysis Approach using
Graph Transformation. Journal of Object Technology. Vol. 9. No 4,
2010, Pages: 25-43

[9] El Miloudi K., El Amrani Y., Ettouhami A.: An Automated Translation
of UML Class Diagram into a Formal Specification to Detect UML
Inconsistency. Proceedings of the 6th International Conference on
Software Engineering Advances. ICSEA. 2011 Pages: 432-438

[10] Mukhin D., Mikolajczak B.: A Method of Concurrent Object-Oriented
Design Using High-Level Petri Nets, Systems, Man, and Cybernetics,
1998. 1998 IEEE International Conference on Year: 1998, Pages: 295 -
300 vol.1

[11] Szmuc T., Szpyrka M.: Formal Methods – Support or Scientific
Decoration in Software Development?, Proceedings of the 22nd
International Conference Mixed Design of Integrated Circuits and
Systems, June 25-27 Toru , Poland, 2015 Pages: 24-31

[12] Szmuc W.: Modelling of Selected UML 2.0 Diagrams with Coloured
Petri Nets. PhD Report. Supervisor Szpyrka M., AGH 2014

[13] Szmuc W., Szmuc T.: Modeling of UML Object Event Handling with
Petri Nets. Towards improvement of embedded systems analysis and
design. Proceedings of the 23rd International Conference Mixed Design
of Integrated Circuits and Systems. June 23-25, 2016 Pages: 454-457

Tomasz Szmuc received MSc in Electrical and
Control Engineering from the AGH University of
Science and Technology (AGH) in 1972. Employed
since the beginning at AGH University of Science and
Technology, where received Ph.D. (1979) and Sc.D.
(1989) degrees (both in Computer Science), and
Professor title (1999). The research focuses on
Software Engineering, in particular applications of
formal methods (Petri Nets, Temporal Logics, Process
Algebras) for modelling and support of software
development. Development of real-time systems and

embedded systems constitute the main stream in application related research.
He is author or co-author of 10 books and more than 180 articles mainly
related the specified above Software Engineering and application categories.
He was supervisor of 15 Ph.D. thesis. He is a member of IEEE Computer
Society, ACM, Computer Science Committee of PAN, and 2 Scientific
Committees of PAU and many other scientific committees.

Wojciech Szmuc received MSc in Automatics and
Robotics (Computer Science in Control and
Management) from the AGH University of Science
and Technology (AGH) in 2001. Employed since
2006 at AGH University of Science and Technology,
where received Ph.D. (2015) in Computer Science.
The research focuses on formal methods (Petri Nets,
Temporal Logics, Process Algebras) in application of
Software Engineering modelling and support of
software development. Although, the main concern
are real-time systems and embedded systems some

research was made also in Digital Watermarking and Steganography. This
work resulted in achieving US patent as one of co-authors.

