Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The construction of shallow tunnels in urban areas requires a prior assessment of their effects on the existing structures. In the case of shield tunnel boring machines (TBM), the various construction stages carried out constitute a highly three-dimensional problem of soil/structure interaction nd are not easy to represent in a complete numerical simulation. Consequently, the tunnelling-induced soil movements are quite difficult to evaluate. A 3D simulation procedure, using a finite ifferences code, namely FLAC3D, taking into account, in an explicit manner, the main sources of ovements in the soil mass is proposed in this paper. It is illustrated by the particular case of Toulouse ubway Line B for which experimental data are available and where the soil is saturated and ighly overconsolidated. A comparison made between the numerical simulation results and the insitu easurements shows that the 3D procedure of simulation proposed is relevant, in particular regarding he adopted representation of the different operations performed by the tunnel boring machine excavation, confining pressure, shield advancement, installation of the tunnel lining, grouting f the annular void, etc). Furthermore, a parametric study enabled a better understanding of the singular ehaviour origin observed on the ground surface and within the solid soil mass, till now not entioned in the literature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--18
Opis fizyczny
Bibliogr. 19 poz., tab., rys.
Twórcy
autor
- University of Batna, Civil Engineering Department, Algeria
autor
- Grenoble-INP, UJF-Grenoble 1, CNRS UMR 5521, 3SR, Grenoble F-38041, France
autor
- University of Batna, Civil Engineering Department, Algeria
Bibliografia
- [1] ATTEWELL P.B., FARMER I.W., Ground disturbance caused by shield tunnelling in a stiff, overconsolidated clay, Elsevier, Engineering Geology, 8, 1974, 361–381.
- [2] BENMEBAREK S., KASTNER R., Modélisation numérique des mouvements de terrain meuble induits par un tunnelier, Revue Canadienne de Géotechnique, 37, 2000, 1309–1324.
- [3] BEZUIJEN A., TALMON A.M., KAALBERG F.J., PLUGGE R., Field measurements of grout pressure during tunnelling of Sophia Rail Tunnel, Tunneling. GeoDelft, 2005, 83–93.
- [4] BEZUIJEN A., TALMON A.M., Proceedings of the Geotechnical Aspects of Underground Construction in soft Ground, Bakker et al. (eds.) Taylor & Francis Group, London, 2006, 187–193.
- [5] BROERE W., BRIKGREVE R.B.J., Phased simulation of a tunnel boring process in soft soil, NUMGE, Mestat (ed.), Presses de l’ENPC/LCPC, Paris, 2002, 529–536.
- [6] DEMAGH R., EMERIAULT F., BENMEBAREK S., Analyse numérique de la stabilité du front de taille d’un tunnel à faible couverture en milieu frottant, Revue Française de Géotechnique, 123, 2008a, 27–35.
- [7] DEMAGH R., EMERIAULT F., KASTNER R., Modélisation 3D du creusement de tunnel par tunnelier à front pressurisé dans les sols surconsolidés, Proceedings des Journées Nationales de Géotechnique et de Géologie de l’Ingénieur (JNGG’08) Nantes, 18–20 juin 2008b, 305–312, (in French).
- [8] DEMAGH R., EMERIAULT E., KASTNER R., Shield tunnelling – Validation of a complete 3D numerical simulation on 3 different case studies. Euro:Tun 2009. Proceedings of the 2nd International Conference on Computational Methods in Tunnelling, Ruhr University Bochum, September 2009a, 77–82.
- [9] DEMAGH R., EMERIAULT F., KASTNER R., Modélisation 3D du creusement de tunnel par tunnelier à front pressurisé – Validation sur 3 cas d’études. Proceedings of the 17ème Conférence de Mécanique des Sols et de Géotechnique (17ème ICSMGE), 5–9 Octobre 2009b, Alexandrie, Egypte, 77–82, (in French).
- [10] DIAS D., KASTNER R., MAGHAZI M., 3D simulation of slurry shield tunnelling, Proceedings of International Symposium on Geotechnical aspects of underground construction in soft ground, Kusakabe et al. (eds.), Balkema, Rotterdam, 2000, 351–356.
- [11] DIERKENS M., Mesures rhéologiques et modélisation de matériaux en cours de prise, Ph.D. thesis, INSA-Lyon, 2005.
- [12] KASPER T., MESCHKE G., A 3D finite element simulation model for TBM tunneling in soft ground, Proceedings of the International Journal for Numerical and Analytical Methods in Geomechanics, 28, 2004, 1441–1460.
- [13] KASPER T., MESCHKE G., On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling, Tunnelling and Underground Space Technology, 21, 2006, 160–171.
- [14] MROUEH H., SHAHROUR I., Modélisation 3D du creusement de tunnels en site urbain, Revue Française de Génie Civil, 3, 1999, 7–23, (in French).
- [15] MROUEH H., SHAHROUR I., A simplified 3D model for tunnel construction using tunnel boring machines, Tunnelling and Underground Space Technology, 23, 2008, 38–45.
- [16] MYRIANTHIS M.L., Ground disturbance associated with shield tunnelling, in overconsolidated stiff clay, Springer-Verlag, Rock Mechanics 7, 1975, 35–65.
- [17] PECK R.B., Deep excavations and tunnelling in soft ground, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State-of-the-art Volume, 1969, 225–290.
- [18] TALMON A.M., AANEN L., BEZUIGEN A., van der ZON W.H., Grout pressure around a tunnel linning, Tunneling. A Decade of Progress. GeoDelft, 2005, 77–82.
- [19] VANOUDHEUSDEN E. et al., Analysis of movements induced by tunnelling with an earth-pressure balance machine and correlation with excavating parameters, Proceedings of the Geotechnical Aspects of Underground Construction in Soft Ground, Bakker et al. (eds.), Taylor & Francis Group, London, 2006, 81–86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81ad2d69-ff77-44e3-a708-253b263de51f