PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Weaving Structure and Hybridization on the Low-Velocity Impact Behavior of Woven Carbon-Epoxy Composites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ struktury tkanin i hybrydyzacji na zachowanie tkanych kompozytów węglowoepoksydowych podczas udaru o małej prędkości
Języki publikacji
EN
Abstrakty
EN
In the current study, the low-velocity impact behaviour of composite materials obtained from carbon and carbon-aramid hybrid woven fabrics of different constructions, produced from the same yarn and under the same production conditions, was determined, and the effects of the weaving structure and hybridisation on the low velocity impact properties were investigated. Depending on the weaving structure, the best results were obtained for twill woven composites. The energy absorption capacity was increased by around 9 - 10% with hybridisation. It was observed that peak load values varied with a coefficient between 0.84-0.97 for hybrid composites, whereas the range was 0.49 - 0.87 for 100% carbon composites, depending on the bending stiffness.
PL
Badano materiały kompozytowe uzyskane z hybrydowych tkanin węglowych i węglowo-aramidowych o różnej konstrukcji. Tkaniny wyprodukowane zostały przy zastosowaniu jednakowych przędz i tych samych warunków produkcji. Badano wpływ zastosowanych tkanin na zachowanie się kompozytów podczas obciążeń realizowanych z małą prędkością. Biorąc pod uwagę strukturę tkanin, najlepsze rezultaty uzyskano przy tkaninach o splocie skośnym. Absorpcja energii była zwiększona o ok. 10% w przypadku hybrydyzacji. Zaobserwowano, że wartości pików obciążenia zmieniały się przy współczynniku 0.84 - 0.97 dla kompozytów hybrydowych, podczas gdy współczynnik ten wynosił od 0.49 - 0.87 dla 100% kompozytów węglowych w zależności od sztywności zginania.
Rocznik
Strony
109--115
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Turkey, Görükle-Bursa, Udulağ University, Vocational School of Technical Sciences
autor
  • Turkey, Görükle-Bursa, Udulağ University, Vocational School of Technical Sciences
Bibliografia
  • 1. Wardle MW and Tokarsky EW. Composites technology review, 1983, 5 (1), 4-10. In: Composite materials-Vol. 2., editors: Kelly I, Zweben C, Oxford: Elsevier science Ltd, 2000.
  • 2. Karahan M., Comparison of Ballistic Performance and Energy Absorption Capabilities of Woven and Unidirectional Aramid Fabrics. Textile Research Journal, 78(8), 2008:718-730.
  • 3. Karahan, M., Kus, A., and Eren, R., An Investigation into Ballistic Performance and Energy Absorption Capabilities of Woven Aramid Fabrics, International Journal of Impact Engineering, 35 6 2008: pp. 499–510.
  • 4. Zweben C. Fracture Mechanics of Composites. Editor Sendecky GP. ASTM, west Conshohocken, PA, 1975. 2(2), 61-67. In: Composite materials-Vol. 2., Elsevier Science Ltd., editors: Kelly I, Zweben C, Oxford, UK, 2000. p 205
  • 5. Karahan M., The Effect of Fibre Volume Fraction on Damage Initiation and Propagation of Woven Carbon-Epoxy Multi- Layer Composites, Textile Research Journal, 82(1): 45-61, (2012).
  • 6. Karahan M.,. Investigation of Damage Initiation and Propagation in 2x2 Twill Woven Carbon/Epoxy Multi-Layer Composites, Textile Research Journal, Vol:81(4), p.412–428, (2011).
  • 7. Karahan M and Godara A, Influence of carbon nanotubes grown on the fibres on damage progression in woven carbon- epoxy composites, Journal of Reinforced Plastics and Composites, 2013; 32(8): 515-524.
  • 8. Karahan M and Karahan N, Influence of weaving structure and hybridization on the tensile properties of woven carbon-epoxy composites, accepted paper in Journal of Reinforced Plastics and Composites, 2013; (DOI: 10.1177/0731684413504019).
  • 9. Kim JK; Leung LM; Lee SWR; Hirai Y. Impact performance of a woven fabric CFRP laminate. Polymers and Polymer Composites 1996; 4 (8): 549-561
  • 10. Kim JK, Kang KW. Analysis of impact force in plain-weave glass/epoxy composite plates subjected to transverse impact. Composites Science and Technology 2001; 61 (1): 135-143.
  • 11. Bibo GA, Hogg PJ, Kemp RMJ. Damage tolerance of UD tape and textile glass reinforced epoxy, 3rd International Conference on Deformation and Fracture of Composites. In Conference Proceedings, Guildford, 27th March 1995. p.374- 383.
  • 12. Kim JK, Sham ML. Impact and De-lamination failure of woven-fabric composites. Composites Science and Technology 2000; 60: 745-761
  • 13. Davies GAO, Hitching D. Impact damage and residual strength of woven fabric Glass-Polyester laminates. Composites Part A 1996; 27: 1147-1156
  • 14. Baucom JN, Zikry MA. Low-velocity impact damage progression in woven Eglass composite systems. Composites Part A 2005;36(5):658–64.
  • 15. Baucom JN, Zikry MA, Rajendran AM. Low-velocity impact damage accumulation in woven S2-glass composite systems. Composites Science and Technology 2006;66(10):1229–38.
  • 16. Dorey G, Sidey GR and Hutching J, Composites, 1978, January 25-32. In: Composite materials-Vol. 2., editors. Kelly I, Zweben C, Elsevier Science Ltd., Oxford, UK, 2000. p 216
  • 17. Jang BZ, Chen LC, Wang CZ, Lin HT, Zee RH. Impact resistance and energy absorption mechanisms in hybrid composites, Composites Science and Technology 1989; 34 (4): 305-35
  • 18. Park R, Jang J. Stacking sequence effect of aramid-UHMWPE hybrid composites by flexural test method. Polymer Testing 1997; 16 (6), pp.549-562
  • 19. Eijk RV, Peijs T. Impact behaviour of glass-aramid hybrid composites. In: Proceedings of ECCM-10 conferencestructures, Whistler-Canada. 1995
  • 20. Marom G, Drukker E, Weinberg A, Banbaji J. Impact behaviour of carbon/ aramid hybrid composites. Composites 1986; 17 (2): 150-153
  • 21. Jeng QD, Fan FQ, Zhang YY. Random critical-core theory of Micro-damage in interply hybrid composites-First failure and hybrid effect. Composites Science and Technology 1993; 49 (4): 341
  • 22. Naik NK, Sekher YC, Meduri S, Damage in woven fabric composites subjected to low velocity impact. Composites Science and Technology 2000; 60 (5): 731- 744
  • 23. Naik NK, Ramasimhaa R, Aryaa H, Prabhua SV, Shama Raoh N. Impact response and damage tolerance characteristics of glass carbon epoxy hybrid composite plates, Composites Part B, 2001, 32, 565-574.
  • 24. Karahan, M., Ulcay Y, Eren R, Karahan N and Kaynak G, Investigation into the Tensile Properties of Stitched and Unstitched Woven Aramid/Vinyl Ester Composites, Textile Research Journal, 80 10 2010: pp. 880–891.
  • 25. Karahan, M., Ulcay Y, Karahan N. and Kus A., Influence of Stitching Parameters on Tensile Strength of Aramid/Vinyl Ester Composites, Materials Science (Medziagotyra) 2013; 19(1): 67-72.
  • 26. Karahan M, Gul H, Ivens J and Karahan N, Low velocity impact characteristic of 3D integrated core sandwich composites. Textile Research Journal, 2012; 82(9): 845–862.
  • 27. David-West OS, Nash DH, Banks WM. An experimental study of the damage accumulation in balanced CFRP laminates due to repeated impact. Composite Structures, 2008; 83: 247-258.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81ac9862-c174-41b0-8776-3b4c7dc73b83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.