PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The dependence of inhomogeneity correction factors on photon beam quality index performed with the Anisotropic Analytical Algorithm

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the study was to investigate the dependence of tissue inhomogeneity correction factors (ICFs) on the photon beam quality index (QI). Materials and Methods: Heterogeneous phantoms, comprising semi-infinite slabs of the lung (0.10, 0.20, 0.26 and 0.30 g/cm3), adipose tissue (0.92 g/cm3) and bone (1.85 g/cm3) in water, were constructed in the Eclipse treatment planning system. Several calculation models of 6 MV and 15 MV photon beams for quality index (TPR20,10) = 0.670±k*0.01 and TPR20,10 = 0.760±k*0.01, k = -3, -2, -1, 0, 1, 2, 3 respectively were built in the Eclipse. The ICFs were calculated with the anisotropic analytical algorithm (AAA) for several beam sizes and points lying at several depths inside of and below inhomogeneities of different thicknesses. Results: The ICFs increased for lung and adipose tissues with increasing beam quality (TPR20,10), while decreased for bone. Calculations with AAA predict that the maximum difference in ICFs of 1.0% and 2.5% for adipose and bone tissues, respectively. For lung tissue, changes of ICFs of a maximum of 9.2% (6 MV) and 13.8% (15 MV). For points where charged particle equilibrium exists, a linear dependence of ICFs on TPR20,10 was observed. If CPE doesn’t exist, the dependence became more complex. For points inside of the low-density inhomogeneity, the dependence of the ICFs on energy was not linear but the changes of ICFs were smaller than 3.0%. Measurements results carried out with the CIRS phantom were consistent with the calculation results. Conclusions: A negligible dependence of the ICFs on energy was found for adipose and bone tissue. For lung tissue, in the CPE region, the dependence of ICFs on different beam quality indexes with the same nominal energy may not be neglected, however, this dependence was linear. Where there is no CPE, the dependence of the ICFs on energy was more complicated.
Rocznik
Strony
127--134
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Medical Physics Department, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
  • Medical Physics Department, Labaid Cancer Hospital, Dhaka, Bangladesh
  • Medical Physics Department, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
Bibliografia
  • 1. Technical Report Series (TRS) No. 430, Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. International Atomic Energy Agency (IAEA); 2004.
  • 2. Papanikolaou N, Battista JJ, Boyer AL, et al. Report of the AAPM Task Group No. 85: Tissue inhomogeneity corrections for megavoltage photon beams. Madison WI: Medical Physics Publishing; 2004.
  • 3. Robinson D. Inhomogeneity correction and the analytic anisotropic algorithm. J Appl Clin Med Phys. 2008;9(2):112-122. doi: 10.1120/jacmp. v9i2.2786.
  • 4. Ding W, Johnston PN, Wong TPY, Bubb IF. Investigation of photon beam models in heterogeneous media of modern radiotherapy. Australas Phys Eng Sci. 2004;27:39-48. doiOI: 10.1007/BF03178375
  • 5. Carrasco P, Jornet N, Duch M, et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med Phys. 2004;31:2899-2911. doi: 10.1118/1.1788932
  • 6. Krieger T, Sauer OA. Monte Carlo versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol. 2005;50(5):859-868. doi: 10.1088/0031-9155/50/5/010
  • 7. Van Esch A, Tillikainen L, Pyykkonen, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33(11):4130-4148. doi: 10.1118/1.2358333
  • 8. Oyewale S. Dose prediction accuracy of collapsed cone convolution superposition algorithm in a multi-layer inhomogenous phantom. Int J Cancer Ther Oncol. 2013;1(1). doi: 10.14319/ijcto.0101.6
  • 9. Hunt MA, Desobry GE, Fowble B, Coia LR. Effect of low-density lateral interfaces on soft-tissue doses. Int J Radiat Oncol Phys. 1997;37(2):475-482.
  • 10. Stathakis S, Kappas C, Theodorou K, et al. An inhomogeneity correction algorithm for irregular fields of high-energy photon beams based on Clarkson integration and the 3D beam subtraction method. J Appl Clin Med Phys. 2006;7(1):1-13.
  • 11. Ono K, Endo S, Tanaka K, et al. Dosimetric verification of the anisotropic analytical algorithm in lung equivalent heterogeneities with and without bone equivalent heterogeneities. Med Phys. 2010;37(8):4456-4463.
  • 12. el-Khatib EE, Evans M, Pla M, Cunningham JR. Evaluation of lung dose correction methods for photon irradiations of thorax phantoms. Int J Radiat Oncol Biol Phys. 1989;17:871-878.
  • 13. Orton CG, Chungbin S, Klein EE, et al. Study of lung density corrections in a clinical trial (RTOG 88-08). Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1989;41(4):787-794. doi: 10.1016/S0360-3016(98)00117-5
  • 14. Akhtaruzzaman M, Kukolowicz P. Dependence of Tissue Inhomogeneity Correction Factors on Nominal Photon Beam Energy. NUKLEONIKA. 2018;63(1):3-7. doi: 10.1515/nuka-2018-0001.
  • 15. Gerbi BJ. A mathematical expression for %DD accurate from Co‐60 to 24 MV. Med Phys. 1991;18(4):724-726. doi: 10.1118/1.596666
  • 16. Podgorsak EB. Radiation Oncology Physics: a handbook for teachers and students. International Atomic Energy Commission (IAEA), Vienna; 2005.
  • 17. Technical Report Series (TRS) No. 398. Absorbed Dose Determination in External Beam Radiotherapy. International Code of Practice for Dosimetry Based on Standards of Absorbed dose to Water. International Atomic Energy Agency (IAEA); 2000.
  • 18. ICRU. ICRU Report No. 42: Use of computers in external beam radiotherapy procedures with high-energy photons and electrons. Maryland, USA; 1987.
  • 19. Ekstrand KE, Barnes WH. Pitfalls in the use of high energy X rays to treat tumors in the lung. Int J Radiat Oncol Biol Phys. 1990;8(1):249-252.
  • 20. Hunt MA, Desobry GE, Fowble B, Coia LR. Effect of low-density lateral interfaces on soft-tissue doses. Int J Radiat Oncol Biol Phys. 1997;37(2):475-482.
  • 21. Kornelsen RO, Young ME. Changes in the dose-profile of a 10 MV x-ray beam within and beyond low-density material. Med Phys. 1982;9:114-116. doi: 10.1118/1.595059
  • 22. Rice RK, Mijnheer BJ, Chin LM. Benchmark measurements for lung dose corrections for X-ray beams. Int J Radiat Oncol Biol Phys. 1988;15(2);399-409. doi: 10.1016/S0360-3016(98)90022-0
  • 23. Yorke E, Harisiadis L, Wessels B, et al. Dosimetric considerations in radiation therapy of coin lesions of the lung. Int J Radiat Oncol Biol Phys. 1996;34(2):481–487.
  • 24. Young ME, Kornelsen RO. Dose corrections for low-density tissue inhomogeneities and air channels for 10-MV x rays. Med Phys. 1983;10:450-455.
  • 25. Van Esch A, Tillikainen L, Pyykkonen J, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33(11):4130-4148.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81ab5dad-e4a2-44eb-a393-1b6ee68bf6b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.