PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On hyper-regularity and unimodularity of Ore polynomial matrices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate Ore polynomial matrices, i. e., matrices with polynomial entries in d/dt whose coefficients are meromorphic functions in t and as such constitute a non-commutative ring. In particular, we study the properties of hyper-regularity and unimodularity of such matrices and derive conditions which make it possible to efficiently check for these characteristics. In addition, this approach enables computation of hyper-regular left and right and unimodular inverses.
Twórcy
autor
  • Institute of Control Theory, Faculty of Electrical and Computer Engineering, Dresden University of Technology, D-01062 Dresden, Germany
autor
  • Institute of Control Theory, Faculty of Electrical and Computer Engineering, Dresden University of Technology, D-01062 Dresden, Germany
Bibliografia
  • [1] Antritter, F., Cazaurang, F., Lévine, J. and Middeke, J. (2014). On the computation of π-flat outputs for linear time-varying differential-delay systems, Systems & Control Letters 71: 14–22.
  • [2] Antritter, F. and Middeke, J. (2011). A toolbox for the analysis of linear systems with delays, Proceedings of CDC-ECC, Orlando, FL, USA, pp. 1950–1955.
  • [3] Beckermann, B., Cheng, H. and Labahn, G. (2006). Fraction-free row reduction of matrices of Ore polynomials, Journal of Symbolic Computation 41(5): 513–543.
  • [4] Ben-Israel, A. and Greville, T.N. (2003). Generalized Inverses: Theory and Applications, Springer, New York, NY.
  • [5] Bose, N.K. and Mitra, S.K. (1978). Generalized inverse of polynomial matrices, IEEE Transactions on Automatic Control 23(3): 491–493.
  • [6] Boullion, T.L. and Odell, P.L. (1971). Generalized Inverse Matrices, Wiley, New York, NY.
  • [7] Campbell, S.L. and Meyer, C.D. (2008). Generalized Inverses of Linear Transformations, SIAM, London.
  • [8] Cluzeau, T. and Quadrat, A. (2013). Isomorphisms and Serre’s reduction of linear systems, Proceedings of the 8th International Workshop on Multidimensional Systems, Erlangen, Germany, pp. 11–16.
  • [9] Cohn, P. (1985). Free Rings and Their Relations, Academic Press, London.
  • [10] Davies, P., Cheng, H. and Labahn, G. (2008). Computing Popov form of general Ore polynomial matrices, Proceedings of the Conference on Milestones in Computer Algebra (MICA), Stonehaven Bay, Trinidad and Tobago, pp. 149–156.
  • [11] Fabianska, A. and Quadrat, A. (2007). Applications of the Quillen–Suslin theorem to multidimensional systems theory, in H. Park and G. Regensburger (Eds.), Gröbner Bases in Control Theory and Signal Processing, De Gruyter, Berlin/New York, NY, pp. 23–106.
  • [12] Franke, M. and Röbenack, K. (2013). On the computation of flat outputs for nonlinear control systems, Proceedings of the European Control Conference (ECC), Zürich, Switzerland, pp. 167–172.
  • [13] Fritzsche, K. (2018). Toolbox for checking hyper regularity and unimodularity of polynomial matrices in the differential operator d/dt, https://github.com/klim-/hypore.
  • [14] Fritzsche, K., Knoll, C., Franke, M. and Röbenack, K. (2016). Unimodular completion and direct flat representation in the context of differential flatness, Proceedings in Applied Mathematics and Mechanics 16(1): 807–808.
  • [15] Gupta, R.N., Khurana, A., Khurana, D. and Lam, T.Y. (2009). Rings over which the transpose of every invertible matrix is invertible, Journal of Algebra 322(5): 1627–1636.
  • [16] Jacobson, N. (1953). Lectures in Abstract Algebra II: Linear Algebra, Springer, New York, NY.
  • [17] Knoll, C. (2016). Regelungstheoretische Analyse- und Entwurfsansätze für unteraktuierte mechanische Systeme, PhD thesis, TU Dresden, Dresden.
  • [18] Knoll, C. and Fritzsche, K. (2017). Symbtools: A toolbox for symbolic calculations in nonlinear control theory, DOI: 10.5281/zenodo.275073.
  • [19] Kondratieva, M.V., Mikhalev, A.V. and Pankratiev, E.V. (1982). On Jacobi’s bound for systems of differential polynomials, Algebra, Moscow University Press, Moscow, pp. 79–85.
  • [20] Lam, T. (1978). Serre’s Conjecture, Springer, Berlin/Heidelberg.
  • [21] Lévine, J. (2011). On necessary and sufficient conditions for differential flatness, Applicable Algebra in Engineering, Communication and Computing 22(1): 47–90.
  • [22] Logar, A. and Sturmfels, B. (1992). Algorithms for the Quillen–Suslin theorem, Journal of Algebra 145(1): 231–239.
  • [23] Meurer, A., Smith, C., Paprocki, M., Čertík, O., Kirpichev, S., Rocklin, M., Kumar, A., Ivanov, S., Moore, J., Singh, S., Rathnayake, T., Vig, S., Granger, B., Muller, R., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M., Terrel, A., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R. and Scopatz, A. (2017). SymPY: Symbolic computing in Python, PeerJ Computer Science 3: e103, DOI: 10.7717/peerj-cs.103.
  • [24] Middeke, J. (2011). A Computational View on Normal Forms of Matrices of Ore Polynomials, PhD thesis, Johannes Kepler Universität Linz, Linz.
  • [25] Newman, M. (1972). Integral Matrices, Academic Press, New York, NY/London.
  • [26] Ollivier, F. (1990). Standard bases of differential ideals, Proceedings of the 8th International Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Tokyo, Japan, pp. 304–321.
  • [27] Ollivier, F. and Brahim, S. (2007). La borne de Jacobi pour une diffiété définie par un système quasi régulier (Jacobi’s bound for a diffiety defined by a quasi-regular system), Comptes rendus Mathématiques 345(3): 139–144.
  • [28] Ritt, J.F. (1935). Jacobi’s problem on the order of a system of differential equations, Annals of Mathematics 36(2): 303–312.
  • [29] Röbenack, K. and Reinschke, K. (2011). On generalized inverses of singular matrix pencils, International Journal of Applied Mathematics and Computer Science 21(1): 161–172, DOI: 10.2478/v10006-011-0012-3.
  • [30] Verhoeven, G.G. (2016). Symbolic Software Tools for Flatness of Linear Systems with Delays and Nonlinear Systems, PhD thesis, Universität der Bundeswehr München, Munich.
  • [31] Youla, D. and Pickel, P. (1984). The Quillen–Suslin theorem and the structure of n-dimensional elementary polynomial matrices, IEEE Transactions on Circuits and Systems 31(6): 513–518.
  • [32] Zhou, W. and Labahn, G. (2014). Unimodular completion of polynomial matrices, Proceedings of the 41st International Symposium on Symbolic and Algebraic Computation (ISSAC), Kobe, Japan, pp. 414–420.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81a4a237-a3a7-4a64-9831-491f4ac2437e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.