PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of heat transfer between an inert gas and a porous structure with ultralow thermal conductivity using the Sumudu transform method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relatively new integral transform called the Sumudu transform method can be used to solve partial differential equations with variable coefficients and as well as intricate problems in engineering and applied mathematics without resorting to a new frequency domain. Unlike the other integral transforms, the Sumudu transform has scale and unit-preserving properties. However, the method is still not widely known or used for solving differential equations especially in the area of applied mathematics and engineering. As a means of demonstrating the potency of the method, the paper applied the Sumudu transform to present analytical solutions of a one-dimensional problem of heat transfer between an inert gas and an ultralow thermal conductivity porous medium. The developed analytical solutions are used to investigate the heat propagation in the porous medium. Depending on the initial temperature, it is established from the study that there are snapshots of the heat wave propagating and a sharp heat front propagation through the medium during its heating or cooling. This sharp front is difficult to detect and quantify by numerical methods. Hence, exact analytical solutions are presented in this study. As it is demonstrated in this study, it is hoped that the Sumudu transform method will be applied to other various complex engineering problems.
Rocznik
Strony
79--87
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria
Bibliografia
  • [1] Andrepont, J.S. (2003). Thermal energy storage: solutions for demand management. Energy Eng., 100, 66-80.
  • [2] Nischang, I., & Tallarek, U. (2007). Fluid dynamics in capillary and chip electrochromatography. Electrophoresis, 28, 611-626.
  • [3] Kostaropoulos, A.E., & Saravacos, G.D. (1997). Thermal diffusivity of granular and porous foods at low moisture content. J. Food Eng., 33, 101-109.
  • [4] Prasher, R. (2006). Ultralow thermal conductivity of a packed bed of crystalline nanoparticles: a theoretical study. Phys. Rev. B, 74, 165413.
  • [5] Chiritescu, C., Cahill, D.G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., & Zschack, P. (2007). Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science, 315, 351-353.
  • [6] Cahill, D.G., Watson, S.K., & Pohl, R.O. (1992). Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B, 46, 6131-6140.
  • [7] Awartani, M., & Hamdan, M.H. (1999). Non-reactive gas-particulate models of flow through porous media. Appl. Math. Comput., 100, 93-102.
  • [8] Allan, F.M., Qatanani, N., Barghouthi, I., & Takatka, K.M. (2004). Dusty gas model of flow through naturally occurring porous media. Appl. Math. Comput., 148, 809-821.
  • [9] Siyyam, H., Merabet, N., & Hamdan, M.H. (2007). Standard numerical schemes for coupled parallel flow over porous layers. Appl. Math. Comput., 194, 38-45.
  • [10] Awartani, M.M., & Hamdan, M.H. (2005). Fully developed flow through a porous channel bounded by flat plates. Appl. Math. Comput., 169, 749-757.
  • [11] Pérez, J., Villatoro, F.R., Santander, J.L.G., Borovsky, M.A., Ratis, Yu.L., Izzheurov, E.A., & Fernández de Córdoba, P. (2008). Heat transfer between a gas and an ultralow thermal conductivity porous structure. Applied Mathematics and Computation, 204, 687-693.
  • [12] Watugala, G.K. (1993). Sumudu transform: a new integral transform to solve differential equations and control engineering problems. International Journal of Mathematical Education in Science and Technology, 24(1), 35-43.
  • [13] Watugala, G.K. (1998). Sumudu transform new integral transform to solve differential equations and control engineering problems. Mathematical Engineering in Industry, 6(4), 319-329.
  • [14] Asiru, M.A. (2002). Further properties of the Sumudu transform and its applications. International Journal of Mathematical Education in Science and Technology, 33(3), 441-449.
  • [15] Asiru, M.A. (2002). Sumudu transform and the solution of integral equations of convolution type. International Journal of Mathematical Education in Science and Technology, 32(6), 906-910.
  • [16] Asiru, M.A. (2003). Classroom note: application of the Sumudu transform to discrete dynamic systems. International Journal of Mathematical Education in Science and Technology, 34(6), 944-949.
  • [17] Weerakoon, S. (1994). Applications of Sumudu transform to partial differential equations. International Journal of Mathematical Education in Science and Technology, 25(2), 277-283.
  • [18] Weerakoon, S. (1998). Complex inversion formula for Sumudu transforms. International Journal of Mathematical Education in Science and Technology, 29(4), 618-621.
  • [19] Eltayeb, H., Kılıcman, A., A note on double Sumudu transform and double Laplace transform. International Journal of Pure and Applied Mathematics, to appear.
  • [20] Eltayeb, H., Kılıcman, A., & Fisher, B. (2010). A new integral transform and associated distributions. Integral Transforms and Special Functions, 21(5-6), 367-379.
  • [21] Belgacem, F.C.M., Karaballi, A.A., & Kalla, S.L. (2003). Analytical investigations of the Sumudu transform and applications to integral production equations. Mathematical Problems in Engineering, 3, 103-118.
  • [22] Kılıçman, A., Eltayeb, H., & Agarwal, R.P. (2010). On Sumudu transform and system of differential equations. Abstract and Applied Analysis, vol. 2010, Article ID 598702, 11 pages.
  • [23] Patel T., & Meher, R. (2016). Adomian decomposition Sumudu transform method for convective fin with temperature- dependent internal heat generation and thermal conductivity of fractional order energy balance equation. International Journal of Applied and Computational Mathematics, 2(2), 1-17.
  • [24] Patel T., & Meher, R. (2016). A study on fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity by using adomian decomposition Sumudu transform method. International Journal of Pure and Applied Mathematics, 110(2), 311-326.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81a36bd0-af59-40e5-af8a-1c2904bcdb07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.